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= Driving force for U.S. Navy to use ML and predictive analytics in
energy systems

= Features of an ML analytics solution

= Control system based on ML and model predictive control, for
autonomous energy systems

= Applications of ML methods for naval energy systems
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Background

= U.S. Navy facilities consume considerable energy.

* Programs to reduce energy costs at these facilities
related to distributed/renewable generation, M
energy storage, or energy efficiency technologies :

= Traditionally, controls and optimization of energy =48 _

systems at installations are addressed at the | " ; - " ﬁ'@
component levels: P o TR XY

» Generator controllers, battery controllers, etc.

= Sensors in distributed power plants and load How could we use these large
centers to collect and visualize the big data for ~ |data sets to help improve

hundreds or even thousands of parameters and | energy utilization efficiency
variables. and reduce energy costs?

Figure Credit: NAVFAC EXWC
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Challenges in Operations

= Microgrids can provide improved resilience, but
challenges still exist in autonomous operations.
« Real-time, system-wide energy optimization.

« Load profiles, renewable energy availability, :
fuel/electricity prices, etc. i

Multiple generators can operate at their full or
partial capacities, leading to varying fuel
efficiency points.

Figure Credit: NAVFAC EXWC

Load shedding is expected to be based upon a dynamic priority level, which depends on
the operation data, scenarios, or user preference.

Enhanced situational awareness about generator fuel efficiency, load patterns, and other
components is essential to higher efficiency of the entire microgrid.

Traditional control solutions do not capture or address all these factors effectively.
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Driving Force

= Modeling energy flow processes, understanding the options and
iImpact of potential energy-saving technologies, and even automating
energy saving processes are very important.

* Proposed ML solution by the UDRI team combines the benefits of
data-driven Bayesian neural networks (NNs) with a physics-guided
learning framework where probabilistic weights are considered for
learnable parameters.

* To enhance the predictive analytics and control system for microgrid
operation in a contract with NAVFAC EXWC.

* To improve the energy forecasting accuracy, reduce energy costs
across the Navy shore establishment, reduce redundant equipment
and U.S. Department of the Navy new equipment orders, etc.
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Challenges & Innovation in Physical System Modeling

» Physics-based modeling provides high fidelity but faces challenges.
e System dynamics not known at time of design.
« Model parameters vary with mission profiles.

= ML methods can analyze data and extract useful insight, but uncertainty not fully
captured.
« Operation data available from various sensors.
* ML algorithms and computing resources available to accelerate the learning process.
= Bayesian learning to concisely capture the uncertainty based on probability.
« Bayesian inference derives posterior distributions from prior distributions.
e Based on new observations (i.e., evidence).
= While physical or NN models generate point-to-point predictions, Bayesian
inference captures probability distributions of parameters across wider operational
ranges.
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Physical-Digital-Probabilistic Triplet Framework for System
Dynamics Modeling and Learning

Probabilistic
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Capturing System A For Uncertainty ) Reallzatlon Optlons
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Informed Learnin ? or Lausa e
Network ° % Forward or Recurrent Correlation Probabilistic ga::xz EZH;Z;I::;S
@ - Belief Space P
) Neural Network , Digital P
e Reflecting Input-Output Relationshi Domain f \ s
_ _ g 1hp P P [ v Digital Systems
iy P Real-Time Processors
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Physical Systems
Embedded Controllers
Sensors, Actuators
Machines

Physical Domain  Dependence

Physical Systems

Figure Credit: UDRI

Physical-Digital-Probabilistic Triplet Concept Figure Credit UDRI
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Features of an ML Analytics Solution

* Physics-based models to represent
known knOW|edge, integ rated into " PL(:III]??’I;ISIIIEStLIchE:ﬂ?;l(]Juantlﬂcatlon
. . 0 + NETWORK: Probabilistic Physics-Informed
design of an NN to improve model &

Learning Network

« TASK: Capture System Stochasticity

accuracy.
= NN learning capability to learn
patterns/features and general trends i
. . Digital-
from operational data and predict it

Digital Domain

* PURPOSE: Causal Correlation

+ NETWORK: Bayesian Neural Network

« TASK: Reflect Input-Output Relationship

Physical Domain

* PURPOSE: Temporal

Dependence
NETWORK: Physics-Aware Recurrent
* TASK: Capture Physical Dynamics

Neural Network

potential behaviors given a new set "a'""‘""“‘
. W Ory g
of input data. *
= Bayesian inference to capture
uncertainty and probability

d i St ri b u t i O n Of Va ri a b | eS a n d fa Cto rS . Z. Jiang, S. C. Miller, and D. Dunn. “Emerging Applications of Machine Learning and Predictive Analytics in

Naval Energy Autonomy,” DSIAC Journal, 2023.

University of Dayton
\ Research Institute




Hybrid Learning/Physics-Based Modeling Approach

Physical Model ML Model Common Information Model
Known Knowledge Bayesian NN Ontology CIM
s o '
A. Prior knowledge x = f(x,u,t) Constraints 5 Kowlo
about model (ut) =0 X, - <j A g ntow et ge
equations, known at gt = |:> .. . a s?clrju;ﬁsreem
time of design. h(x,u,t) <0 | e ,
° ( ) N\ % parameters,
> Online constraints.
C. System dynamics @ Leaming pdf (6) 3. Learned Parameters WEIEESHilodlle
and uncertainty @ and Distributions R
learned from real-time )
operation data. 4. Multi-Model Fusion Considering Operational Constraints o oo D. New
Sampling distribution 3 mBoIiZ/\;:actor- knowledge
5. Converted Back in a Format at time instant k y learned from
Based Knowledge
Understandable to Humans : data
Samplej{ X(k+1)=A,X(k)+ B U(k) Representation :

Y(k+1) =CX(k+ 1)+ D Uk + 1)

Combines known physical knowledge at time of design and learning capability of data-driven methods during runtime.

NCiaAr -

Uni it f Davt Z. Jiang and J. Saurine. “Data-Driven, Physics-Guided Learning of Dynamic System Models,” AIAA Science & Technology Forum, January 2023.
niversity o g ayton Z. Jiang and K. Beigh. “Bayesian Learning of Dynamic Physical System Uncertainty,” AIAA Aviation Symposium, June 2022.
\ Research Institute Z. Jiang and K. Beigh. “Data-Driven Modeling of Dynamic Systems Based on Online Learning," AIAA Propulsion & Energy Forum, August 2021.




Long Short-Term Memory (LSTM) NN

= STM NNs are a subclass of recurrent NNs.

» These networks have additional stored states resulting from the past output, and
the state storage can be internally controlled subject to the network status itself.

= Such controlled states can be regarded as gated memory blocks in NNs, and they
serve as LSTM's key components in controlling information flow.

* Forget Gate — determines which data should History Info Output Info
be forgotten or removed from the cell state. ~ celistate [jN‘”NI:? Cell state
Hidden State ﬁ ﬁ Hidden State

* Input Gate — determines which data from the

current input and previous output will be fed roreetae Output Gate
into the cell state as new information. x Input Gate

« Qutput Gate — determines which data from Hidden State T/\f
the updated cell state will be used as output. ||

Input Data Figure Credit: UDRI
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LSTM Cell Structure - Remembering History Information

Prior Cell State
¢, (HxB)

Wi, (H x H)
W4, (H x Dx)
b (H x B)

Output Layer:
wfc (DV X H)
bfc (DY X B)

Prior Hidden
State h, ; (H x B)
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LSTM Layer (H Hidden Nodes)
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Forget Gate

Activation
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LSTM Network — Modeling Time Sequences

| A Data Sequence of Length 60 and 1-Second Time Interval +

Each output is a Y1 Y2 Ye0
vector of size Dy T 1 :

Fully-Connected Output Layer

Each node is a “h h
vector of size H 1 h, hs C, 60 LSTM
—W ———» — — — L » La er
LSTM1 LSTM2 IstTM3 [, T LSTM59 LSTM60 Y
F
Eachi ti I s
ach input is a X, Xo . _ Xs0
vector of size Dx One Minute of Operation Data
I ' Input
Input Layer — Sequence Generation with B Batches Layer

ﬁ Feature Selection & Data Normalization

Data File in Readable Format |
or from Memory Block nput , ,
Figure Credit: UDRI
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LSTM Nevural Network Prediction Model in Operation

Loss function (training error) in each epoch

0.018

0.016

0.014

0.012 r

Loss (MSE)
o
2

0.006

0.004

0.002 r

Loss During LSTM Training

0.008

+Relative Error < 0.1% within 30 epochs
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Control Solution Based on ML and Model Predictive Contirol

Al-Driven Predictive Control

= Model predictive control
= ML at runtime

Value Proposition

» |ncreased efficiency
» Improved resiliency
» Enhanced stability
» Reduced costs

Advantages

= System-level coordination
= Situational awareness

= QOperational constraints

= Optimization

Sense > Learn > Predict > Optimize > | |
Figure Credit: UDRI

(_
2. Closed L for Subsystem P Optimizati
MPC for Microgrid with Distributed Generation, ) OREE OO TOT SEBSYSTEm FOWEr EpHmIzation
Generators Energy Storage and Controllable Load /P
MPC for Power + Mobile/onsite Power Generators <

SR Yl s 1. Closed Loop for Model Calibration
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C. RT Model Predicti , .
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Physics-based artificial intelligence (Al) system that mimics how
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Multilayer Model Predictive Conirol (MPC) Framework

References

Host Computer for
User Interface

l

Model Predictive Controller for Energy Optimization based on
Real-Time Parallel Processors

Real-Time

Commands for energy/

Data Logger

Cyber System

Measurement :

Learning-Based
Model Update

Model Predictive Controller (MPC) for Dynamic >
Power Management based on FPGAs

Output

‘Controls actions for
: power converters

...................

FPGA Hardware Platform

Open-Architecture Communication Network based on Heterogeneous Protocols

11\

To decompose control of
an entire physical system
into layers or pieces of
control territories that
can be more efficiently
managed/coordinated.
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Formulation of MPC Scheme (1)

(U — Umax |
Model Equation  f(X,U) =0,Y = I(X,U) Uiy — U (1)
gX,U) = |, X <0
X(k+1) = A.X(k) + B, Uk) Amin T X
Discretization { (2)
2 2
Objective ~ Min .2, C(X,U) eg. Ci(X,U) =ky(Ye —Yrer) + ky(Ux — Urer)” 3)
h,(X,U) =A; X(k)+B,Uk)—X(k+1)=0 (4)
Constraints
9. X, U)+ 2z, =0 k=1to Np
Lagrangian L (U, X,A,z, 1) = 22’1’1 C,(X,U) + (5)
ZI;X Aék (gck(U(k)) + 2z k) + ZNP Aok (gx,k(U(k)) + Zx,k) + u- (Zﬁfﬁl ln(zc,k) + Zgﬁl ln(zx,k))

INYA

University of Dayto Z. Jiang and A. Raziei. “Hierarchical Model Predictive Control for Real-Time Energy-Optimized Operation of
\ Research Institute Aerospace Systems,” AIAA/IEEE EATS Symposium, August 2019.




Formulation of MPC Scheme (2)

u
Define g = lz] .The goal is to find the best vector 6 so that the Lagrangian is minimum.
YA

According to the first-order optimality conditions, i.e., Karush—-Kuhn-Tucker (KKT) condition,

minl (U, X, A, z,u) == oL (ugc;’z’“):o Nonlinear function of 0
By Newton’s method, to find 0,
g ot =@ n 4 (6)
Au 1

J-AO=]|aA|=—-¢p = A0=-J7 9 (7)

ve 1 A2 C H,L U, gw) 0]
where = gu) +z (8) J=1v"g) 0 | 9)

AZ -7 —uz 0 Z-Z plij

Gradient Vector - NN - _ Jacobian Matrix

University of Dayton Z. Jiang and A. Raziei. “Hierarchical Model Predictive Control for Real-Time Energy-Optimized Operation of
\ Research Institute Aecrospace Systems,” AIAA/IEEE EATS Symposium, August 2019.




Operation of Two-Layer MPC in an Example Power System

________________________

. P
P Prime Synchronous Active I N p. .
e Mover Generator Rectifier ] i —>L L Lumped
—— —— DCand AC
Higher | ' Loads
MPC e I e
| | N |
i Source Converter |
> Lower | .
MPC i T |
; \ LY I A Ve—— G
|| Battery Energy Bidirectional B N/ \V\i— - |
Veer || Storage System DC/DC Converter A \V4 j

Figure Credit: UDRI

Hierarchical MPC decouples system-wide energy optimization (higher-level MPC) from fast power
management (lower-level MPC) in a synergistical manner.
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Higher-Level MPC i\\iﬁ; s [
"s,R:pc F] § APU-
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[
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EquatIOn B o 0 ¢ ]=1 B(J) N - a Figur_e__Credit:U[I)RI

L dpG 1 Discretization
dt TG — Py —Pg) — P.(k) = c;Py(k) + c,P:(k —1)

Objective min € = ¥,7, [wg(Pg(k) — B.)? + wgPp(k)? + wsPs(k)? + wg (Eg (k) — Eq(k)) ]

4 0 < Py(k) < PM,max 0 < Ps(k) < PS,max Control
Constraints < —APy < APy (k) < APyyy —APs < APs(k) < AP, Rate of change
N Ein < Eg(k) < Epax State
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Capabilities Developed

Modeling, Simulation, and Optimization Capabilities

Data-driven, ML-based modeling ability for energy systems
« With varying temporal, probabilistic, and categorical characteristics

Real-time prediction capability considering dynamics, uncertainty, and causal relationships

Real-time operation optimization functionality

Real-time hardware-in-the-loop (HIL) simulation
« With hybrid physics/learning-based models

Functionalities in Power Systems
= Learn/validate a compact representation of complex components from offline operational data
» Update/calibrate the model with online operational data
= Learn uncertainty in model parameters/dynamics and consider contingencies in prediction
= Accelerate the real-time simulation and HIL testing with compact learning-based models

University of Dayto
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Applications of ML and Predictive Analytics in Naval
Energy Autonomy

= Utility Planning — Predictive Analytics

* Renewable energy production prediction Machine Learning Data Visualization
. . Modeling Capability Capability
« Load profile forecasting
« Energy efficiency prediction
I Real-Time Real-Time Ops
Facility Management Copaity Copabiy
« Energy management for buildings or vehicles
 Digital twin for test facilities e B Ezgﬁgi“ﬁ“
 Predictive maintenance AR R X R
M iC rog rid Ap p | icatiO n S \ Figure Cerdit: Z. Jiang, S. C. Miller, and D. Dunn, Adapted From a Concept Design Art Image Codesigned
by Advint LLC
« Military microgrids '
» Microgrid test bed .
To Next 3 Slides

Shipboard Power Systems
Naval Aviation Operational Energy

' DSIKC
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Microgrid Applications

= Data-Driven, ML-Based Modeling
= Real-time Prediction Capability

* Renewable production
» Load profiles and demand prediction
«  Utility price

= Real-time Operation Optimization
* Generation costs
* Power delivery losses
« Energy reserve and stability

= Real-Time HIL Simulation
* Power availability
» Resilience
»  Power quality
* Protection

University of Dayto
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Shipboard Power Systems

= Widely applicable to shipboard power systems,
especially electrified warships, due to versatile
energy flows and flexible control opportunities.

* [nvolving complex components, such as prime
movers, generators, energy storage, distribution
circuits, and sophisticated loads (directed energy,
high-power radar), with operational constraints.

= Optimized operation of propulsion/power systems
reduces system weight/size and improves fuel
consumption and operation costs of military systems
where power is used.

= Al-driven digital engineering methods and tools can
reduce development, acquisition, sustainment, or
total ownership costs of fielded systems.

NQin -

University of Dayto M. U. Mutarraf, Y. Terriche, K. A. K. Niazi, J. C. Vasquez, and J. M. Guerrero. “Energy Storage Systems for
Research Institute Shipboard Microgrids—A Review,” Energies 2018, 11, 3492, https://doi.org/10.3390/en11123492
AY




Naval Aviation Operational

Energy

Naval Aviation Operational Energy systems

also benefit from ML and model predictive

control:

-  Safety, weight, size, maneuverability, and agility are
high-priority features.

Desired advantages include:

«  Predictive optimization in real-time.

«  Proactive actions prior to operational changes.

«  Meeting economic, operational, or safety constraints.

Total operation costs considerably reduced by:
«  Maintaining optimal dynamic energy reserve.

«  Decreasing energy losses.

«  Optimizing mission profiles.

«  Benefiting from automated operation.

Real-Time Al-Driven Power/Energy Optimization, Stability
: Enhancement and Protection of Power Systems for |
Space, Aviation and Microgrid Applications

1 o
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Z. Jiang, H. Huang, and S. Hossain. “A High-Fidelity, Low-Latency, FPGA-Based, Real-Time
Development Platform for Advanced Aircraft Power Systems,” AIAA/IEEFE Electric Aircraft
Technologies Symposium (EATS), July 2018.
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Anticipated Benefits

» |mprove military capabilities due to enhanced power and energy
performances enabled by Al technologies.

« Captures energy system dynamics, degradation, and uncertainty into the model in a
data-driven manner, which would be difficult to capture or otherwise unavailable.

* Provides mechanisms for online continuous model learning/validation.

« Enables fast (real-time) HIL simulation to gain insights into the system behaviors,
greatly reducing the design and development time/cost of military energy systems.

« Empowers an integrated control platform to proactively manage energy flows
among subsystems to achieve better efficiency/performance and improve autonomy.

= \alidation needed in realistic application systems may include energy
savings, cost savings, and power quality and resilience improvements.
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Recommendations for Future Development

= Demonstrate prototypes and validate their advantages.

- Validate the effectiveness and accuracy of ML algorithms and models for forecasting generator
fuel efficiency and load profiles based on operational data.

«  Conduct power HIL testing of a prototype Al-driven, predictive optimizer to evaluate the
effectiveness of learning-based prediction and model-based predictive optimization
functionalities in a realistic microgrid.

e  Perform field demonstration at a U.S. Department of Defense (DoD) installation site and validate
the performance of the ML-driven predictive optimizer prototype so the technology can be
transitioned to the field faster.

= For future development, ML can also be used in the test/evaluation stage.

« Screen and down select test scenarios faster.

« Automatically analyze test data to determine correlations in system parameters or conditions.
*  Generate candidates of best design options.

« Diagnosis/prognosis and preventive maintenance.

University of Dayto
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Summary

= Emerging applications of Al and ML technologies in naval energy
autonomy and digital transformation

= Potential impact on operational autonomy
= Benefits across the DoD’s power and energy ecosystems

= |mpact of Al and ML techniques will be multiplied when

combined with other emerging digital technologies such as:
« Sensor fusion through universal learning

* Predictive analytics by deep-learning and data science methods

« Computational cognitive science

«  Optimization techniques

*  Quantum computing

University of Dayto
\ Research Institute




Questions and Discussions

Thank you for your attention!
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