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Artificial intelligence (AI) applied to weapons 
systems represents a major trend in research in 
the past 10 years.  These initiatives seek to increase 
weapon accuracy, perform nonactive means 
of targeting, aid navigation and guidance and 
control (e.g., in Global Positioning System-denied 
situations), and reduce overall computational 
resources vs. traditional physics-based approaches 
to enable intelligent targeting on smaller, more 
affordable weapons systems.  This research also 
includes extending the battlespace of operators 
to unmanned aerial vehicles and teaming with 
manned and unmanned platforms using swarming 
methods.

We begin with an overview description and history 
of AI and outline the principals, techniques, and 
applications of AI for weapons systems.  This 
includes a review of research and programs in 
supervising autonomous systems; guidance, 
navigation, and control; behavior and path 
planning; sensor and information fusion; intelligent 
strategy and planning; wargame modeling; and 
cognitive electronic warfare.

We then offer a survey of systems and programs 
that apply AI for weapons systems.  Although the 
focus is on U.S.-based systems and programs, a 
small subsection on related systems from Russia 
and China is included.  We conclude with a brief 
commentary on the ethical considerations for 
using AI for weapons systems.

ABSTRACT
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SECTION

01
1.1  PROBLEM STATEMENT

The recent advances in machine learning (ML) and 
AI research shed light on the power and potential 
of AI in enabling innovations, increasing the 
utility of machines, and augmenting the human 
capability and experience.  The disruptive nature 
of AI technologies and the depth of their impact 
are yet to be fully grasped by the general public 
at large.  Considering the new era of emerging 
technological threats, it is important to showcase 
the critical and relevant AI research and state-
of-the-art technologies that not only provide 
weapons systems with increasing autonomy over 
conventional weapons systems but significantly 
increase their lethality and combat survivability.  
Ultimately, AI presents colossal and strategic 
opportunities in developing game-changing 
technologies that will ensure our national security, 
prosperity, and technological leadership.

1.2  CONVENTIONAL WEAPONS SYSTEMS

The U.S. military has made monumental strides 
in creating advanced, conventional weapons 
technologies that support the missions and 
enhance the capabilities of our soldiers on 
the battlefield.  These conventional weapons 
technologies are mostly automated systems 
that rely on a preprogrammed set of rules in 
planning, executing, and accomplishing a task 
or mission.  However, on the frontier end of the 
newly developed weapons of countries like China 
and Russia, AI-enabled warfare and hypersonic 
weapons pose a new breed of qualitative 

challenges for the U.S. Armed Forces.  The pace of 
the next-generation combat requiring time-critical 
and copious combat information processing for 
strategic decision making consigns many of the U.S. 
conventional weapons systems to low-risk missions 
and a posture of diminished deterrence outside the 
nuclear realm.

It must be acknowledged that humans alone are 
expensive assets to train.  Adding more personnel 
to the battlefield is not an elegant or cheap 
solution to advancing the state-of-the-art of war. 
Instead, augmenting human-in-the-loop systems 
with AI-enabled intelligent hardware can provide 
more eyes and ears on the battlespace and free up 
human decision making by enabling AI systems to 
perform some tasks that are easy and routine.

Furthermore, unmanned combat aerial systems 
(UCASs) are a proven cost-effective systems 
solution for intelligence, surveillance, and 
reconnaissance (ISR) missions and remote 
airstrikes.  However, the automated capabilities are 
still bounded by human-in-the-loop operations, 
evaluation, and engagement.  While there is no 
intent on eliminating the human element in 
weaponized AI systems in any foreseeable future, 
the capability of humans continues to constitute a 
ceiling in the synergetic potential of these systems.  
But a new ecosystem of AI-enabled intelligent 
weapons systems would usher in new forms and 
strategies of warfare.

In its 2021 report, the National Security Commission 
on Artificial Intelligence submitted that the U.S. 

INTRODUCTION
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Department of Defense (DoD) military enterprise 
trails behind the commercial sector in terms of 
integrating AI-enabled technologies and urged 
that the foundations for widespread integration of 
AI across the DoD be in place by 2025 [1].

1.3  BRIEF HISTORY OF AI

The concept of artificially replicating a facet 
of human intelligence in some form was 
contemplated by philosophers for centuries.   
In 1869, William Jenon created the first machine 
that implemented logic computation based 
on Boolean logic.  The machine was capable of 
computing Boolean algebra and Venn diagrams 
faster than humans.  With this development of 
logic-computing machines, it was natural to 
question whether machines could reason through 
logic to solve problems and make decisions 
for humans.  An illustration of the history and 
evolution of AI is shown in the timeline in Figure 1-1 
and expanded on in this section [2].

In some of the earliest work in theoretical computer 
science, British mathematician Alan Turing 
pondered the question of whether machines can 
behave and solve problems intelligently and in 
the same manner as humans.  He posited in his 
Turing test that if a machine mimics indistinctly 
an intelligent being such as a human, then the 
machine is intelligent.  This theoretical test became 
a guiding formalism in which current machines 
are tested for their capacity or potential to mimic 
the human concept of intelligence.  As a testimony 
to the test, the Loebner prize is a Turing test 
competition whose mission is to evaluate the 
current state of machine intelligence research 
against the fundamental question posed by Turing.

In 1928, John von Neumann proved the theorem 
underlying the Minimax algorithm, which seeks to 
provide a strategy for minimizing the maximum 
possible loss during zero-sum games play.

1869 1928 1943 1955 1957 1958 1960 1968 1972 1986 1987 1989 1992 1997 2012 2014 2016 2019 2020

Earliest concept of 
Neural Networks Policy Iteration 

Method
Development of 
Bayesian Neural 

Networks

Development of 
Perceptron

First machine 
with Boolean 

Logic

Self-Play 
Reinforcement 

Learning

Residual Neural 
Networks

DeepMind’s 
AlphaGo

OpenAI’s GP3

AlphaGo beats 
best Go player Lee 
Sedol

TD Gammon Program 
trained by self-play 
reinforcement learning 
in Backgammon game

The first intelligent 
anthropomorphic 
robot

Ronald Howard 
developed Policy 
iteration metods for 
MDPs

Frank Rosenblatt 
developed a simplified 
mathematical model 
names “perceptron” 
describing how 
neurons in our brains 
operate

MiniMax 
Algorithm

John Von-Neumann 
proved the theorem 
behind MinMax 
algorithm

“Artificial 
Intelligence” coined

John McCarthy coined 
‘Artificial Intelligence’ 
to refer to machine 
intelligence

Development of 
MDP

Richard Bellman 
introduced Markov 
Decision Processes 
which laid out the 
foundation for 
Reinforcement 
Learning

A* Algorithm

Development of 
Multi-layer Perceptron

Development of 
Convolutional 

Neural Networks

Development of
Recurrent Neural Networks

Path planning algorithm 
by Nils Nilsson

IBM’s Deep Blue

Deep Blue beats Top 
player Garry Kasparov 
in Chess

AI-Based Aerial 
Combat 

Competition

Generative 
Adverserial 
Networks

Shield AI’s AI beats 
top F-16 pilot in 
simulated dogfight

William Jenon 
created the first 
machine that 
implemented logic 
computation based 
on Boolean logic

McCulloch and Pitts 
pioneered the 
McCulloch-Pitts 
theory of formal 
networks

WABOT-1 Robot

Figure 1-1.  AI History Timeline (Source:  QinetiQ).
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During the height of the Second World War, 
Alan Turing and his teams developed a machine 
algorithm that could decipher the German Enigma 
message codes.  The success of his algorithm, which 
fueled further endeavors in delegating complex 
tasks to a machine, was the foundation to machine 
computation and a precursor to the development 
of ML.

In 1943, McCulloch and Pitts pioneered the earliest 
concept of neural networks (NNs)—McCulloch-Pitts 
Theory of Formal Networks—which was featured 
in four of von Neuman’s lectures at the University of 
Illinois in 1949 [3].

Around the same time, John McCarthy, a computer 
scientist who coined “artificial intelligence” to refer 
to machine intelligence in 1955; computer scientist 
Allen Newell; and Herbert A.  Simon, an economist 
and political scientist, pioneered the first true 
program aimed at automated reasoning (called the 
Logic Theorist).  With this ground-breaking effort, 
the quest for intelligent machines began, paving 
the way for AI as a new field of academic research in 
computer science.

In 1957, a psychologist named Dr. Frank Rosenblatt 
developed a simplified mathematical model named 
“Perceptron,” which described how neurons in our 
brains operate.  The achievement was highlighted 
as the “Perceptron Convergence Theorem.”

That same year, Richard Bellman developed 
dynamic programming for solving a class of 
optimal control problems.  He also introduced the 
Markov Decision Processes formulation of discrete 
stochastic optimal control problems, which laid out 
an important foundation for what is now referred to 
as “reinforcement learning.”

Following these developments, another AI pioneer 
named Arthur Samuel successfully developed the 
first checkers algorithm using his earlier seminal 
work in ML.  He had implemented an early version 
of what is now known as “Alpha-Beta Pruning,” 
which is a search tree method that reduces the 

number of evaluated nodes by the Minimax 
algorithm.  An early version of a nonparametric, 
supervised learning method called Decision Trees 
was developed by a statistician named William 
Belson in 1959.

In the 1960s, AI research focused on solving 
mathematical and optimization problems.  The 
policy iteration method for Markov Decision 
Processes was proposed by Ronald Howard in 1960, 
establishing some of the earliest work related to 
reinforcement learning.

By 1968, the well-known path search algorithm 
called A-star was proposed by the computer 
scientist Nils Nilsson.  Advances in robotics 
modeling, control, and machine vision were 
made in the late 60s, leading to the development 
of the first “intelligent” anthropomorphic robot 
named WABOT-1 in 1972 and integrating limb 
manipulation, vision, and speech systems.

The revival of the Harry Klopf’s “Heterostatic 
Theory of Adaptive Systems” was influential in 
the development of trial-and-error paradigm of 
adaptive systems.  In 1977, Ian Witten proposed one 
of the earliest reinforcement learning systems that 
used temporal-difference methods.  Richard Sutton 
and Andrew Barto devised a reinforcement learning 
algorithm called the Actor-Critic Method.

Because of the computational limitations of 
the mid-70s to late 80s computers, AI research 
found difficulties in applications with large data 
processing requirements, such as in vision learning 
or optimization problems.  At the same time, 
mathematical research “proved” that a (single 
layer) perceptron could not learn certain patterns.  
Furthermore, a Lighthill report published in 1973 
was very pessimistic about the potential for AI, 
which caused funding to be cut for AI research.  As a 
result, the funding shortage led to research in AI to 
experience a period known as “AI Winters.”

By the mid to late 80s, important theoretical 
contributions were made in NNs following the 
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development of the multilayer perceptrons in 
1986.  These contributions were the development 
of recurrent neural networks (RNNs) in 1986 by 
David Rumelhart, Bayesian Networks in 1987 
by John Denker et al., and the convolutional 
neural networks (CNNs) by Yann LeCun in 1989.  
Moreover, Chris Watkins developed another 
important reinforcement learning method dubbed 
“Q-Learning” in 1989.

In 1992, at IBM’s Thomas J.  Watson Research 
Center, Gerald Tesauro trained the TD Gammon 
program for the backgammon game by self-play 
reinforcement learning.  IBM’s Deep Blue computer 
beat chess world champion Garry Kasparov in 1997 
using brute-force, search-based algorithms, making 
it the first program to win against a top professional 
in chess.

During the late 90s and early 2000s, much of the 
progress seen in ML was driven by the exponential 
progress made in computer processing, storage, 
and distributed computing.  In 2007, the 
guaranteed optimal play requiring significant 
computing resources was solved for checkers.

The surge of graphical processing unit use for 
general computing in the last two decades led 
to further progress in AI applications today, 
specifically, the development of the different 
NN topologies such as residual networks and 
generative adversarial networks in 2012 and 2014.

In 2015, the ImageNet competition, an open 
competition to develop a classifier for the 
ImageNet image set of some four million images, 
had a winner with an error rate considered to be 
lower than a single human.  In 2016, DeepMind’s 
AlphaGo program became the best AlphaGo player 
after beating Lee Sodol, who was considered the 
best player of the Go game at the time.  Following 
the learning capability of AlphaGo, AlphaZero 
extended AlphaGo in 2017 to become the best 
player at chess and Shogi.

In 2019, the U.S. Defense Advanced Research 
Projects Agency (DARPA) launched AlphaDogfight, 
a series of three competition rounds of AI-based 
aerial combat algorithms against top-trained pilots 
in a simulated F-16 dogfight.  The first and second 
rounds of the competition entailed the AI programs 
competing against each other.  The third round 
distilled the AI victor pilot to compete against 
the top U.S. Air Force Weapon School graduate.  
Heron System’s AI pilot not only won against the 
competing AI aerial combatants but secured an 
incredible score of five victories against the highly 
trained human F-16 pilot.

OpenAI introduced a “natural language processing” 
model called GP3 in May 2020, which generated 
writing content indistinguishable from a human.  Its 
latest version can generate programming language 
code from simple descriptive language [4].  The 
history of AI continues forward, especially for DoD 
applications to weapons systems.  The remainder of 
this report will survey contemporary AI techniques 
and systems related to weapons systems.

1.4  WHAT IS AI?

According to Barr and Feigenbaum, AI is defined 
as “the part of computer science concerned 
with designing intelligent computer systems, 
that is, systems that exhibit characteristics we 
associate with intelligence in human behavior 
– understanding language, learning, reasoning, 
solving problems, and so on” [5].

A more recent definition of AI is provided by Stuart 
Russel and Peter Norvig in their book Artificial 
Intelligence:  A Modern Approach as “the designing 
and building of intelligent agents that receive 
percepts from the environment and take actions 
that affect that environment” [6].

Pei Wang elegantly defined intelligence as 
“adaptation with insufficient knowledge and 
resources” [7].  Although the definition does not 
state the purpose of adaptation (e.g., objective), it 
sheds light on what is needed to be accomplished 
to reach this intelligence.



1-5

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 1

Artificial Intelligence (AI) for Weapons Systems 
DISTRIBUTION STATEMENT A. Approved for public release:  distribution unlimited.

If AI is to be defined anthropocentrically, i.e., to 
perform tasks at the human-level of intelligence, 
then an AI requires perception, reasoning, 
knowledge construction, inference, decision 
and planning, learning, communication, and the 
ability to move and manipulate the environment 
efficiently.

AI’s scientific goal is to answer which ideas about 
knowledge representation, learning, rule systems, 
search, etc., explain various sorts and levels of real 
intelligence.  The engineering goal is to develop AI 
techniques for the different domains of application 
to tackle real-world problems.

At the root of AI’s scientific foundation, we find 
identifiable concepts from different scientific 
fields—philosophy, logic/mathematics, 
computation, psychology and cognitive science, 
biology and neuroscience, and evolution.  
Contributions from these different domains 
of knowledge already proved inevitable and 
indispensable in the quest for discovery and better 
understanding of what AI is or would be.  Many 
fields researching AI are concurrently constructing 
models of how human cognition operates and 
adopting useful concepts between them.  For 
example, the NN, a concept which originated 
from biology, attempted to build artificial systems 
based on simplified artificial neurons, a concept 
which led to the representation of a simple abstract 
knowledge structure powerful enough to solve 
large sets of computational problems.

Al is broadly classified into three main tiers—
Artificial Narrow Intelligence (ANI), Artificial General 
Intelligence (AGI), and Artificial Super Intelligence 
(ASI). Figure 1-2 illustrates the various groupings 
within the three tiers, which are discussed more in 
this section.

1.4.1  ANI

ANI is a description of an AI system that performs 
a narrow or singular task.  It can include various 
methods to obtain the result, such as traditional 

ML (image classification as an example) or target 
detection (both ML and rule-based systems).  
Given a set of rules or constraints, its objective is 
to provide a set of outputs representing a narrow 
set of tasks.  ANI does not expand or learn from 
new perception nor does it self-learn a new mode 
of operation.  Data mining, most expert systems, 
and predictive functions specific to an application 
(e.g., spam detection and facial recognition) are all 
considered forms of ANI.  ANI would also include 
“limited memory AI”—the type of system used in 
self-driving cars, using past experiences (training), 
and learning to make decisions and improve over 
time.

1.4.2  AGI

AGI is a stronger form of intelligence, as it is 
augmented by more human intelligence-like 
traits, such as the ability to learn on its own and 
interpret emotions and speech tone.  This places 
the intelligence associated with AGI on par with 
a human’s level of intelligence.  Some key core 
capabilities of AGI are as follows:

•	 The ability to reason, solve problems, 
employ strategy, and make decisions under 
uncertainty.

•	 The ability to show knowledge.

•	 The ability to plan.

•	 The capability to learn.

•	 The ability to communicate in a natural 
language.

•	 The ability to integrate all the above toward a 
common goal.

•	 The combination of human-like thinking with 
computation like the Turing test.

1.4.3  ASI

ASI models an intelligence that surpasses the 
brightest human minds.  Methods for achieving ASI 
are still being conceptualized but would be those 
systems that go beyond AGI and entail some sort 
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of self-awareness.  These systems would ideally 
represent all human cognitive capability and more.

1.5  ML

ML is the ability of a machine to learn from data for 
the purpose of making accurate predictions.  It is 
broadly divided into four classes of learning that 
provide a rich family of dedicated and generalized 
techniques.

1.5.1  Supervised Learning

In this form of learning, training data use contained 
input and labeled or predefined output data.  If 
there are missing input or output entries, they are 
preprocessed so that an input is mapped properly 
to its true corresponding output.  By learning from 
the properly generated training dataset, the system 
learns to associate an input not in the original 
dataset to its predicted output (label or value).  
Typical problems addressed by this type of training 
are regression and classification [8].

1.5.2  Unsupervised Learning

The system in this form of learning discovers 
interesting or hidden structures directly from the 
unlabeled data [9].  The unsupervised learning is 

used for cluster analysis, dimensionality reduction, 
or estimating the density likely to have generated 
the input data [8].

1.5.3  Semisupervised Learning

When the dataset contains labeled and unlabeled 
data, the system in this form of learning makes 
use of the unlabeled data to better capture the 
underlying data distribution and obtain a better 
prediction had it trained from the labeled data 
alone.  This form of learning is suitable in situations 
when there are far less labeled data than the 
unlabeled one in the training dataset [8].

1.5.4  Reinforcement Learning

In this mode of learning, the system trains using 
a reward/penalty mechanism such that it selects 
and performs actions that either lead the system 
to receive rewards when the actions are desirable 
or receive penalties when the actions are not 
desirable.  Reinforcement learning problems 
involve learning what to do (how to map situations 
to actions) to maximize a numerical reward signal [9].

Figure 1-2.  AI Tiers (Source:  QinetiQ).
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STATE-OF-THE-
ART METHODS

SECTION

02
This report focuses on specific AI methods central 
to developing state-of-the-art technologies 
relevant to weapons systems, particularly 
in ML-based AI (or simply learning AI) and 
advanced stochastic optimization methods 
in solving problems related to the behavior of 
autonomous systems in a complex, dynamic 
environment.  The learning-AI paradigm has 
eclipsed the earlier paradigm of knowledge-
based AI systems; hence, the latter is not explored 
in this report.  The techniques presented do 
not represent an exhaustive survey within their 
respective paradigms but instead represent either 
fundamental methods proven in state-of-the-art 
robotics and autonomous systems, an amelioration 
of fundamental techniques with interesting 
properties, or recent techniques having potential 
application in weapons technologies.

2.1  LEARNING AI PARADIGM

2.1.1  Deep Learning

Deep learning refers to a subset of powerful 
algorithms within ML that employs deeply 
connected artificial neural networks (ANNs) called 
deep neural networks (DNNs).

According to Yoshua Bengio [10]:

“Deep learning algorithms seek to exploit 
the unknown structure in the input 
distribution in order to discover good 
representations, often at multiple levels, 
with higher-level learned features defined 
in terms of lower-level features.”

The building block of a DNN is the perceptron, 
which consists of an information processing 
unit called an “artificial” neuron.  Inspired by the 
structure and behavior of the neurons in the brain, 
a neuron provides the fundamental operation of an 
NN.

The modern concept of an “artificial” neuron has the 
following three basic elements [3]:

1.	 Synapses:  These are connecting links weighted 
or characterized by a value strength.

2.	 Transfer Function:  This function traditionally 
represents a linear regression model (linear 
combiner) summing the input signals weighted 
by their respective weights or strength values.

3.	 Activation Function:  A function for limiting the 
amplitude of the output of the neuron.  The 
transfer function may include an externally 
applied bias value that modulates (increases/
decreases) the net input of the activation 
function.

The perceptron is the simplest form of an NN 
formed by a single neuron with adjustable synaptic 
weights and a bias [3].

The multilayer perceptron (MLP), as a 
generalization of the single-layer perceptron and 
fundamental feedforward network architecture 
(Figure 2-1), owes its success to the error 
backpropagation algorithm, which is based on the 
error-correction learning rule.  Using a gradient-
descent-based method and the chain rule, the 
algorithm aims to minimize a loss function (e.g., 
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squared error, cross entropy, etc.) by propagating 
its change regarding the free parameters (weights 
and biases) backward through the network against 
the direction of the synaptic connections [3].

A DNN is deep due to the hidden layers not 
visible in the input or output nodes.  The depth 
refers to the layers in the network, whether it 
has a feedforward, feedback, or convolutional 
architecture.  There is no general rule to the number 
of hidden layers an NN needs to have to be a DNN.  
It is, however, accepted that an NN with three or 
more layers (including the output) having nonlinear 
activation function is a DNN (Figure 2-2).

While DNNs have better performance overall than 
shallow NNs, their depth is a source of several 
issues, such as the following:

•	 Vanishing Gradient:  This problem is 
encountered when computing the gradients 
in the backpropagation algorithm during the 
learning process of an NN.  During the partial 
derivative computation of the loss function 
regarding each free parameter, it may occur 
that when the gradient of the bounded 
activation function (e.g., hyperbolic tangent 
is bounded in [-1,1] and logistic function is 
bounded in [0,1]) becomes small, the chain rule 
of the gradient values leads to a vanishingly 
small number in networks with a large number 
of layers, preventing the improvement of the 
learning process [11].  The problem is often 

addressed by nonbounded activation functions 
(e.g., rectified linear activation function [ReLU]) 
or renormalization.

•	 Degradation:  This problem refers to the 
increase in error rate as the number of hidden 
layers of an NN is increased, thus affecting 
both the learning ability and the informative 
capacity of an NN.

•	 Overfitting:  This problem occurs when a 
network model becomes so overly fitted to the 
training dataset that it no longer applies to the 
novel dataset.  The model learns the details, 
noise, and outliers in the training dataset, 
thus negatively affecting its performance.  The 
problem may occur also in complex network 
models with many hidden layers.

•	 Hard to Train:  As the network structure 
becomes more complex, the gradient-based 
backpropagation algorithm, which is an 
unconstrained optimization problem, becomes 
difficult to solve due to nonconvexity of the 
loss-function hyperplane and the NP-complete 
nature of the optimization problem [12]. 

DNNs are supervised learning techniques, but some 
network topologies like autoencoders operate in 
an unsupervised manner.  They can also be used 
to cluster input based on similarities.  One can 
extract the features with an NN and then deploy 
an unsupervised methodology such as k-means 
clustering, which makes the NN architecture a 
semisupervised DNN.

Hidden Layer
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Figure 2-1.  Nonlinear Model of Neuron in a Feedforward NN (Single Hidden Layer) (Source NCSAI [1]).
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The following fundamental and important 
topologies represent different deep-learning 
model structures:

1.	 MLP:  The common class of feedforward 
ANN consisting of at least three layers—
input, hidden, and output—and nonlinearly 
activating nodes.

2.	 RNN:  A class of NNs that maintains the 
temporal context of data in its internal memory 
to predict time-dependent dynamics in 
sequential data.  They use feedback connection 
to hold internal states as memory so sequence 
processes can be remembered, which makes 
them different than the feedforward NNs [13].

3.	 Long Short-Term Memory (LSTM) Networks:  
An RNN variation devised to overcome the 
computational limitation called “vanishing 
gradient” of RNNs due to the long-term 
dependency problem of the latter.  The LSTM 
network avoids the long-term dependency 
problem by retaining the longer-term context 
with the previous prediction [14].  LSTM 
networks are used for time-series processing, 
speech recognition and synthesis, audio 
processing, and financial forecasting.

4.	 Autoencoders:  A class of NNs used for the 
unsupervised learning of data representation 
via encoding, compression, or reconstruction.  
Autoencoders are considered self-supervised, 
learning NNs and are used in dimensionality 
reduction, features clustering, and data 
compression [15].

5.	 Nonlinear Autoregressive eXogeneous (NARX) 
Network:  A recurrent dynamic network with 
feedback connections enclosing several layers 
of the network.  The network adopts the linear 
autoregressive model, which is used to model 
time-series dynamics.  NARX can be used 
to predict the output of nonlinear dynamic 
systems (system identification) and for 
nonlinear filtering [16].

6.	 CNNs:  An MLP designed specifically to 
recognize two-dimensional (2-D) shapes with 
a high degree of invariance to translation, 
scaling, skewing, and other distortions 
[3].  The core concept introduces hidden 
convolution and pooling layers to identify 
spatially localized features via a set of receptive 
fields in kernel form.  These structures were 
devised to have important properties that are 
neurobiologically inspired, such as feature 
mapping and subsampling.  As a result, CNNs 
extract multiscale, localized spatial features to 
construct high-level representations.

7.	 Gated Recurrent Unit (GRU):  A recent 
alternative approach to solving the “vanishing 
gradient” problem of RNN; hence, it attempts 
to solve a similar class of problems pertaining 
to time-series processing.  While LSTM is more 
accurate on a larger data set, a GRU uses less 
memory and runs faster due to its structure 
that contains less parameters.  Therefore, it uses 
less training parameters overall to compute 
[17], which is a tradeoff justified in many 
applications.

Hidden
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Hidden
Layer 3

Hidden
Layer N–1

Hidden
Layer N
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Output 1

Output 2
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…

…

Figure 2-2.  Deep Feed Forward Networks (Source:  NCSAI [1]).
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8.	 Residual Neural Networks (ResNets): 
A recent development in deep CNN that 
introduces a scheme devised to solve several 
observed issues in deep CNNs (namely, the 
vanishing gradients and degradation problems 
[18]) and improve the performance of previous 
deep CNN architectures like Visual Geometry 
Group (VGG) architectures.

One main advantage of ResNets is that 
they are faster to train because inputs can 
forward propagate faster through the residual 
connections (or skip the connection, which 
provides another path for data to reach the 
latter part of the network by skipping layers) 
across the layers.

ResNets are used in object recognition, activity 
recognition, and scene understanding and have 
been also successfully used for NLP problems, 
such as machine comprehension (question/
answer) and speech emotion recognition [19].

9.	 Densely Connected Networks (DenseNets):  A 
type of CNN that leverages dense connection 
structure between layers through modules 
called Dense Blocks, where all the layers 
are connected directly with each other.  
Feedforward nature is maintained by 
propagating feature maps forward through 
the layers.  DenseNet is cited to provide the 
best representation of images when compared 
to other CNN-based architectures [20] when 
applied to near-identical images in ImageNet 
(a large visual database for visual object 
recognition research).  It is suggested that 
DenseNets are also easier to train compared to 
architectures of similar size [20, 21].

10.	Sparse Network (SparseNet):  A modified 
architecture to further improve the 
performance of DenseNet by sparcifying the 
density.  This architecture offers comparable 
results to DenseNet while being smaller and 
faster (2.6× smaller and 3.7× faster) than 
the original DenseNet architecture [22].  The 
architecture does, however, require a layer 
depth between 28 and 76.

11.	Generative Adversarial Networks (GANs):  
Networks used for unsupervised learning tasks.  
They are composed of one generative model, 
while the other is a discriminative model.  The 
two models compete to generate samples 
from the statistical distribution of the original 
samples.  As a result, the samples generated are 
closely matched to the original samples [23].

GANs are used to interpret content from data 
and create similar but novel versions of the data.  
However, they can suffer from convergence 
issues and, hence, are hard to train.

12.	Graph Neural Networks (GNNs):  An 
architecture based on graph data structure, 
which models a set of objects (nodes) and their 
relationships (edges).  Motivated partly by the 
lack of CNNs to handle non-Euclidean types of 
data (e.g., unordered, nonuniform grid graphs), 
GNNs were created to perform inference 
on graph-represented data having complex 
relationships and object interdependencies 
[24, 25].

GNNs have be applied to numerous applications 
of structured and unstructured data, such as the 
following:

•	 Computer Vision:  Image classification and 
scene graph generation.

•	 NLP:  Semantics exploitation in machine 
translation, relation extraction, and question 
answering.

•	 Recommender Systems.

•	 Program Reasoning.

13.	Deep Belief Networks (DBNs):  A generative 
model NN devised to address the performance 
shortcoming of traditional deep-layered NNs—
namely, the learning time, large number of 
data required for training, and the convergence 
issues due to inadequate selection of 
parameters.  DBNs are based on generative, 
stochastic NNs that can learn a probability 
distribution from its inputs.  They are 
constructed by restricted Boltzmann machines 
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or autoencoders, with the hidden layers of each 
subnetwork serving as the invisible layer for the 
next layer.  They are trained in a greedy manner, 
are less computationally expensive compared 
to forward NNs, and suffer far less from the 
vanishing gradient problem [26].

The following drawbacks associated with DBN are 
numerous:

•	 Requires significant computation resources for 
a large dataset.

•	 Requires a solid theoretical grasp of their 
structure and how they function by the user.

•	 Requires classifiers.

DBNs are known to capture deep hierarchical 
representations of input features.  They have been 
used for image recognition [27], motion-capture 
application [28], and nonlinear dimensionality 
reductions [29].

Because DNNs, in general, are computationally 
harder to train, classic optimization methods for 
the backpropagation “Error Propagation” algorithm 
can have convergence issues.  State-of-the-art 
optimization methods for the backpropagation 
algorithm in DNNs include the Limited-memory 
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 
algorithm and conjugate gradient algorithms.  
These algorithms are formulated to adapt their 
computation by tuning the learning rate and step-
size parameters and compute derivative-based 
information (e.g., Hessian matrix) to home-in on 
the valleys in the search hyperspace for optimal 
solutions of the free parameters.

The deep-learning ability to generate complicated 
models from large data leads to improved accuracy 
and expressiveness.  As a result, deep learning 
provides the following set of pertinent solutions 
to a wide range of application within AI problem 
domains:

•	 Recognition in speech, images, and video.

•	 Context evaluation in multidimensional data 

(e.g., imaging, videos, radar, and monitoring 
systems).

•	 Time series forecasting.

•	 Function approximation.

•	 Data compression.

•	 Data outliers’ detection.

•	 System identification.

•	 Scene understanding.

•	 Explainable AI.

•	 Autonomous driving.

Deep learning provides the following advantages 
over classic ML algorithms:

•	 Scalability supported by parallel and 
distributed computing.

•	 Complex feature extraction.

•	 Hierarchical feature learning.

•	 Ability to deal with unstructured data.

•	 Adaptable DNN architecture to various types 
of problems.

Some known limitations of deep learning are as 
follows:

•	 Incorporating logic in hybrid topologies is 
difficult to achieve.

•	 Training time may be extremely long for 
complex models or high-dimensional feature 
space.

•	 Generally, massive training datasets for 
convergence are required.

•	 Convergence is difficult for some structures.

•	 No theoretical formalism exists to guide 
the selection of the proper topology and 
parameter tunning for a given problem. 
The selection is often a domain knowledge.

Deep learning provides a powerful framework of 
techniques for hierarchical learning to find multiple 
high-level abstract representations of patterns in 
complex data.
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2.1.2  Reinforcement Learning

The concept of reinforcement originated in the 
work of psychologist Ivan Pavlov in 1903 when he 
observed the conditioning process of animals via a 
reinforcement mechanism [30].  The mathematical 
foundation of the problem, however, was 
introduced by Richard Bellman in 1957 in his work 
when he formulated the problem of deciding best 
actions that meet a cost function under uncertainty 
as the Markov Decision Process (MDP).

2.1.2.1  MDP

MDP is a discrete-time stochastic process for 
modeling sequential decision making of an action-
based agent in a stochastic environment in which 
this agent can act and where the outcome of the 
action is uncertain [30].

2.1.2.2  Partial Observation MDP

The Partial Observation MDP (POMDP) models the 
case in which uncertainty is extended to the state.  
Instead of exact observation of the state, only the 
probabilistic relationship with the state is observed.  
A common solution to POMDPs is the inference of a 
belief distribution over the underlying state at the 
current time step and then applying a policy that 
maps beliefs into actions [30].

Reinforcement learning (RL) models the natural 
learning process of humans, animals, and 
several biological systems via the action-reward 
mechanism.  RL is categorized in two forms—
single-agent RL (SARL) and multiagent RL (MARL).

2.1.2.3  SARL

In SARL, the RL model is divided into states, 
actions, and rewards (Figure 2-3).  States are a 
representation of the current world or environment 
of the task.  Actions are something an RL agent can 
do to change these states, while rewards are the 
utility the agent receives for performing the desired 
actions.  The states inform the agent the direction 

toward a goal via the rewards signal.  The objective 
is to learn a policy that specifies through time 
which actions to take from each state to maximize 
the cumulative reward [9].

The reward signal received by the agent 
determines the quality of the action.  Unlike in 
supervised learning (SL), where the actions are 
directly mapped to desired behavior, the feedback 
“reward” in RL is less informative [31].  The agent 
must balance its exploration of its environment 
by relying on its previous knowledge of actions 
and rewards to take uncertain future actions with 
unknown rewards or penalties in the hopes it 
discovers more rewarding actions.  This balance of 
discovery and action is referred to as exploration-
exploitation tradeoff [32].

Unlike the control theoretic approach, the 
environment in RL is represented by all aspects 
external to the agent control—systems dynamics, 
process errors, nonlinearities (e.g., saturation, 
dead zones, and hysteresis), delay, sensors’ noise, 
disturbances (e.g., steady wind, gusts, center of 
gravity, and the moment of inertia displacement), 
and any variations from the nominal values.  
The environment also is represented by the 
uncertainties related to high-level decision logic.  
Furthermore, the logical structure is embedded 
in the control authority represented by the policy 
function (controller).

One of the key advantages to RL is that it can be 
model free (system dynamics representation) 
and does not require knowledge of the reward 
function [33].  The formulation of the system’s 
state of evolution in the environment as an MDP 
allows generality of the type of problems RL can 
solve, even a nonquadratic reward function (cost 
function) and a system with stochastic nonlinear 
dynamics.  The control structures that result from 
the learning process are generalized structures 
capable of adapting to changes in systems 
dynamics and the environment (the nature and 
severity of disturbances in the control-theoretic 
context) while automatically acquiring suitable 
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control policies that improve through the learning 
process.  This makes RL less restrictive, extensible 
to other similar systems (with different dynamics) 
without change to the control scheme, and 
scalable [34], implying its applicability to a large 
set of complex problems requires strategy and 
adaptation.

2.1.2.4  MARL

MARL is another form of RL that differs from SARL.  
A robotic manipulator learning to organize its 
environment, a humanoid learning to walk, or a 
car learning to park on its own are all examples of 
SARL.  MARL is concerned with how multiple agents 
interact with one another and their environment 
[35, 36].  MARL has two theoretical frameworks—
stochastic games and extensive-form games.

Stochastic games can be construed as a 
multiagent generalization of MDP.  Depending 
on the objective, MARL may address cooperation, 
competition, adversariness, or a combination of 
these settings.  Robotic rescue and collaborative 
manufacturing are examples of cooperative 
MARL, while swarm unmanned aerial systems 
(UASs) are examples of mixed MARL.  Under the 
stochastic games, MARL is accepted to be limited 
to a fully observed state space in which the agent 
has perfect information on the system state and 
executed actions at given time step [35].   
In a competitive setting, namely zero-sum and 
constant-sum utility, MARL has been demonstrated 

in an imperfect information setting for multiagent 
decision making.

The distributed nature of MARL comes with several 
advantages—experience sharing between agents, 
imitated behavior of a human or qualified agent, 
and redundancy inherent in homogeneous MARL, 
which provides increased level of robustness.  
However, the multidimensionality of the state 
space and the combinatorial nature of MARL pose 
several challenges as follows [30, 31]:

•	 Nonstationarity Problem:  The environment 
may become nonstationary as each agent acts 
on it to improve its policy concurrently.

•	 Nonuniqueness of the Learning Goal:  The 
multiobjective criteria of each agent may not 
be aligned with those of other agents and, 
therefore, consensus equilibrium points are not 
reached.

•	 Scalability Problem:  As the number of agents 
increases in any MARL setting, the joint action 
space increases exponentially.  This is known as 
the curse of dimensionality.

Also note that scalability and imperfect information 
are open problems in both SARL and MARL due 
to the large state and action spaces and their 
continuity.

2.1.2.5  Deep Reinforcement Learning (DRL)

DRL is the result of the recent progress in RL 
research that demonstrates the benefits of 
incorporating DNNs in RL algorithms.  DNNs serve 
as function approximators of states to values or 
state-action pairs to an action-value criterion.  
When used with RL, DNNs interpret inputs and 
provide prediction of policy [37].

State-of-the-art, model-free RL algorithms are 
Deep Q-learning (Dueling Deep Q-Network [DQN], 
Prioritized Dueling DQN), Policy Gradient Method 
(Actor-Critic, Advantage Actor-Critic, Asynchronous 
Actor-Critic, and Actor-Critic With Experience 
Replay), Deep Deterministic Policy Gradient, Soft 

Agent

Environment
(Fully or Partially Observable)

Reinforcement 
Learning Algorithm Reward

ActionPolicy

Policy Update

Observation

Figure 2-3.  RL Architecture (Source:  QinetiQ).
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Actor-Critic (a bridge between Q-learning and 
DPG).  State-of-the-art model-based algorithms are 
Manifest State Based and Latent State Based [38].

2.1.2.6  Demonstrations of RL

In the last decade, pivotal state-of the-art AI 
developments in RL by research- and industry-
leading technology firms have captured a wide 
interest from ML practitioners across different fields 
of application and sectors.  Examples of RL’s success 
are described next.

DeepMind’s AI bots reached super-human 
performance after defeating the top human 
professionals in Go, chess, and Shogi games.  
OpenAI developed an AI that defeated top 
players in a real-time strategy, multiplayer game 
environment and developed an RL-based motion 
control algorithm for an anthropomorphic robotic 
hand with perception and motion dexterity to 
solve Rubik’s Cube [39].  DARPA’s AlphaDogfight 
competition (Figure 2-4) ended with a crushing 

win for Heron Systems AI against the human 
pilot, ushering an era of credible, autonomous, 
and potentially lethal machines.  DRL success was 
further demonstrated in other atypical applications, 
such as the automated reconfiguration of network 
topology of software-defined networks to address 
network traffic fluctuations and minimize network 
delay [40].

When using RL for defense applications, robots 
may operate with a human in the loop to accept 
or reject the recommended actions of the RL 
algorithm.  Much like early self-driving cars operate 
with a backup human driver to take over when 
the algorithm’s actions were hazardous, a robot 
with a human in the loop may be necessary and 
practical in situations where human life is actually 
or potentially at stake.  In this case, the robot should 
be thought of as an assistive device rather than a 
fully autonomous vehicle.  The human operator 
then retains the capacity and responsibility to veto 
or override the robot’s decisions as needed.

2.2  STOCHASTIC OPTIMIZATION AND SEARCH 
ALGORITHMS

2.2.1  Stochastic Optimization

A stochastic process refers to a random process 
that captures a random probability distribution 
model.  In mathematical optimization problems, 
stochastic optimization is a family of methods for 
minimizing or maximizing an objective function 
when randomness is present [41].  Stochastic 
optimization is part of the superset of probabilistic 
optimization algorithms. Probabilistic algorithms 
also include robust optimization, distributionally 
robust optimization, and chance constraint 
optimization.  Heuristics and metaheuristics 
are important categorizations of approximate 
methods of mathematical optimization because 
they refer to how these algorithms perform the 
approximate optimal solution search and the type 
of problems they solve.  Heuristics refer to informed 
search methods that systematically explore the 
search space under a constant heuristic rule.  
They are problem specific and can be prone to a 

Figure 2-4.  DARPA’s Air Combat Evolution (ACE) Program Using 
AlphaDogfight in Simulations (Source:  DARPA, https://www.darpa.
mil/news-events/2021-03-18a).
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local optima trap.  Metaheuristics are high-level 
strategies for informing and guiding a search using 
multiple criteria so that the overall search behavior 
keeps changing to explore the search space [42].  
Metaheuristics are not problem specific [43] and are 
suitable to multiobjective optimization problems 
[44].

2.2.1.1  Swarm Intelligence (SI)

SI is the behavior pattern that forms from the 
decentralized collective actions of distributed, 
self-organized agents (Figure 2-5).  Each individual 
agent acts and reacts according to its local rules 
from which a complex group behavior unfolds [45].  
The behavior that emerges from the interactions of 
the agents offers robustness, adaptation, flexibility, 
and scalability, which are key advantages afforded 
by the swarm intelligence over actions of an 
individual agent or those from multiple agents with 
centralized control [46].

The behavior of the swarm is classified into the 
following [45]:

•	 Spatial organization (aggregation, formation, 
and self-assembly).

•	 Navigation (collective exploration, coordinated 
motion, and swarm transport).

•	 Decision making (consensus, task allocation, 
group perception, and collective fault 
detection).

•	 Other paradigms like human-swarm 
interaction.

Although SI algorithms can suffer from scalability 
issues, they have been successfully applied to solve 
several optimizations, clustering, planning/routing, 
scheduling/load balancing, and collision avoidance 
problems.  (See Section 3.4.2 in this report for select 
state-of-the-art examples of swarm intelligence 
algorithms and their use-cases in autonomous 
systems behavior and path planning.)

2.2.1.2  Evolutionary Algorithms (EAs)

EAs are nature-inspired, stochastic search 
algorithms that employ the principles of 
evolution—reproduction, genetic crossover, and 
mutation to improve the outcome of a desired 
quantity (fitness) in a system [34].  This process 
leads to an evolved solution set that is better 
adapted and suited to the environment from which 
it originates than the global population of potential 
solutions.

Examples of the traditional EA algorithms are 
the Genetic Algorithm, Genetic Programming, 
Evolutionary Programming, Evolutionary 
Strategies, and Differential Evolution (DE).  
Covariance Matrix Adaptation-Evolutionary 
Strategy, Neuroevolution of Augmenting 
Topologies (NEAT), Memetic Algorithm, and Natural 
Evolution Strategy represent some of the recent 
variants of the EA algorithms.

In recent years, EAs were used to improve the 
performance of AI/ML models in all ML processes—
namely, in preprocessing (e.g., feature selection 
and imbalanced data resampling), learning (e.g., 

Environment

Perceive

Process

InitiateImprove

Re-Evaluate

Inform
Changed

Intent

Reconsideration Cycle

Decision is made

Communicate among agents Knowledge BaseSelfish Intent

Final IntentConsider IntentKnowledge Base

Social
Interraction

Intent Execution

Figure 2-5.  Swarm Algorithm Concept for Each Agent (Source:  QinetiQ, Adapted From Cunha [47]).



2-10

State-of-the-A
rt Report: SEC

TIO
N

 2

Defense Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release:  distribution unlimited.

parameter setting, membership functions, and 
NN topology), and postprocessing (e.g., rule 
optimization, decision tree/support vectors 
pruning, and ensemble learning) [48].  EAs have 
also been successfully used as an effective offline 
method for multiobjective control parameter 
optimization in the control-theoretic context [49].

EAs are robust and global compared to traditional 
gradient-based optimization methods and 
may be applied without expert knowledge or 
domain-specific heuristics [34].  Gradient-based 
optimization methods are prone to finding 
suboptimal solutions due to their susceptibility to 
the choice of initial conditions, function accuracy, 
and search criteria, as the search may be guided 
to a narrow region and lead to global optima 
reachability issues.  EAs are known to provide 
global solutions since the entire solution space 
is sampled from and operated on [49]; however, 
they do not offer a convergence guarantee toward 
optima.

2.2.1.3  Physics-Inspired Algorithms

From electromagnetic and gravitational 
phenomena to material and quantum physics, the 
following algorithms in this class are inspired by the 
phenomenon observed in the physical world:

•	 Artificial Potential Field Algorithm (APF):  A 
method that models the environment as 
an artificial potential field and uses virtual 
force assignment so that the target point is a 
gravitational field while points of interest (e.g., 
obstacles) generate repulsive fields.  APF is 
being used extensively in robotics and aerial 
path planning.  In Xie et al. [50], a modified 
APF was used for unmanned aerial vehicle 
(UAV), three-dimensional (3-D) path planning 
in a threat-infested environment.  The method 
improves the traditional APF local minimum 
and target nonreachability problems and 
demonstrates obstacle avoidance in real-time 
for static and dynamic environment with 
unknown and moving obstacles.  Similarly, 
Feng et al. [51] showed fixed-wing UAVs 

forming around target points while performing 
obstacle avoidance.  In underwater settings, 
Fan et al. [52] proposed an improved APF 
method for underwater path planning in an 
unknown obstacle’s environment.  While APF is 
not a stochastic algorithm, it is often combined 
with stochastic algorithms, such as the genetic 
algorithm or particle swarm optimization, to 
further improve its performance [53].

•	 Simulated Annealing (SA) Algorithm:  A 
probabilistic technique in the family of 
metaheuristic methods for approximating 
global optimum of a function over an arbitrary 
(discrete or continuous) search space replete 
with local optima.  Inspired by the physics of 
materials and their properties during heating 
and cooling phases, SA can solve optimization 
problem whose objective functions and 
constraints are multivariate and used for local 
and global searches.

•	 Quantum-Bacterial Swarm Optimization 
(QBSO) Algorithm:  A semiphysics-inspired 
algorithm incorporating bacterial foraging 
swarm behavior with quantum theory.  
This algorithm is an improved version of 
the Bacterial-Foraging Optimization (BFO) 
algorithm, as the latter does not solve discrete 
problems.  By introducing the Quantum Effect, 
the QBSO adapts the foraging behavior of the 
BFO to accelerate the convergence rate [53].

2.2.1.4  Other Metaheuristics

Additional optimization methods within the 
metaheuristics family of algorithms are those 
advocating integrating adaptation or learning 
search heuristics to intelligently escape local 
minima or arrive at global optima, such as hybrid 
optimization methods and reactive search 
methods.  They include the following:

•	 Guided Local Search (GLS) Algorithm:  A version 
of the local search algorithm with the aim to 
improve efficiency and robustness.  GLS is a 
penalty-based, metaheuristic algorithm.  The 
key improvement in GLS is its guidance to 
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escape from local optima solutions and find 
better solutions via its use of a penalizing 
mechanism that determines which features 
are selected to penalize when the local trap 
occurs.  A notable variant of the GLS algorithm, 
called Elite-Biased GLS (EB-GLS), showed 
improved performance in vast search spaces of 
combinatorial optimization problems [54].

•	 Tabu Search (TS) Algorithm:  A search 
method for a local search type of problems in 
mathematical optimization.  One of the main 
components in TS is its adaptive memory used  
in the search and responsive exploration.  The  
use of recency and frequency memory in TS 
fulfills the function of preventing the searching 
process from cycling endlessly in the search 
[55].  A noteworthy property of TS is its 
applicability to combinatorial optimization, 
where the objective of obtaining an optimal 
ordered solution applies.

Local search algorithms tend to converge on 
local regions that may be suboptimal.  However, 
hybrid optimization methods can be effective in 
several scenarios.  For example, EAs are ill suited 
for fine-tunning parameter structures that are 
near-optimal solutions.  But the main advantage 
of EAs lies in the quick localization of high-
performance regions of a vast and complex 
search space.  When these regions are located, 
local search heuristics algorithms like TS can 
be used in conjunction to fine-tune optimal 
parameters [56].

•	 Reactive Search:  A set of methods that merge 
ML and statistics within a heuristic search 
to solve complex optimization problems.  
Reactive search is a learning search through 
an internal online feedback loop for the 
self-tuning of critical parameters.  Similar to 
how human brain systematically learns from 
past experiences, learning on the job, rapid 
analysis of alternatives, coping with incomplete 
information, and adaptation to events, the 
use of ML automates the algorithm selection, 
adaptation, and integration [2].

2.2.2  Graph Search Algorithms

Graph search algorithms are a family of search 
algorithms geared toward path-planning 
applications, such as solving for shortest paths in 
static and dynamic environments.  In this report, we 
focus on informed search algorithms that are based 
on the heuristic A* algorithm (an optimized version 
of the classic Dijkstra’s algorithm) and the sample-
based search algorithms.  These graph search 
algorithms include the following:

•	 D* Algorithm:  An informed incremental 
graph search algorithm based on the A* for 
dynamic and unknown environment.  The 
algorithm avoids the computational cost of 
backtracking and, hence, is faster than the 
classic A*.  It is used to generate a collision-
free path in dynamic environment having 
moving obstacles.  The algorithm D* and its 
variants can be employed for any path cost 
optimization problem where the path cost 
changes during the search for the optimal 
path to the goal, which makes the algorithm 
fit for online replanning.  D* is most efficient 
when these changes are detected closer to the 
current node in the search space [57] but is 
notably more efficient than A*, as it avoids the 
high computational cost of backtracking. 

•	 Rapidly Exploring Random Trees (RRT*):   
A sampling-based tree search algorithm used 
to efficiently find the path from a start to an 
end point in a nonconvex, high-dimensional 
space with state constraints.  RRTs expand by 
rapidly sampling the space, growing from the 
starting point, and expanding until the tree is 
sufficiently close to the goal point.  In every 
iteration, the tree expands to the nearest vertex 
of the randomly generated vertex.  This nearest 
vertex is selected in terms of a distance metric.  
It can be Euclidean, Manhattan, or any other 
distance metric.  The algorithm is designed with 
few heuristics and arbitrary parameters.  Many 
variants of the algorithm offering different sets 
of improvements exist like those geared toward 
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applications or computational requirements.  
RRT* is an optimized version that claims to 
achieve convergence toward the optimal 
solution, thus ensuring asymptotic optimality 
along with probabilistic completeness.  As 
a result, it obtains shorter paths but at the 
expense of computation performance, as it is 
slower than the RRT [57].  Notable improved 
variants for faster convergence are RRT*-smart 
and informed-RRT*.

While RRT is a faster algorithm than the classic A*, it 
can produce longer paths than A*.  However, both 
RRT and A-star (A*) are known to suffer from slow 
convergence speed for 3-D navigation in a dynamic 
environment (curse of dimensionality) and an 
additional issue of path smoothness in the case of 
RRT [50].

2.3  EMERGING AI PARADIGMS

We highlighted vastly applied techniques to the 
state-of-the-art AI systems.  Some techniques like 
RL can be formulated with knowledge transfer 
in mind and, hence, can be applied to similar 
problems.  Nevertheless, it remains to a large 
degree that applications of current paradigms are 
narrow and lack several key characteristics of strong 
AI—generalizability, explainability, knowledge 
abstractions, common sense, and causal reasoning.  
Current research in neurosymbolic AI and 
neuroevolution (NE) attempt to address some 
limitations of narrow AI in different ways.

2.3.1  Neurosymbolic AI

Neurosymbolic AI is an emerging area of AI that 
combines the classic rules-based AI with modern 
deep-learning techniques.  The architecture 
emphasizes interaction between neural, symbolic, 
and probabilistic methods and inference.  
Symbolic part represents reason with abstract 
knowledge.  The probabilistic inference establishes 
causal relationship between facts, reason about 
uncertainty, and unseen scenarios.  The neural part 
discovers representations and patterns to sense 

environment data to knowledge and help navigate 
search spaces [58].

Neurosymbolic models have been shown to 
outperform state-of-the-art DNN models in image 
and video reasoning domains.  Benchmarking 
the state-of-art techniques with neurosymbolic 
ones showed better performance for accuracy and 
training time than the traditional models [59].

One of the inherent drawbacks in this hybrid 
modeling technique is the coupled complex 
control flow compared to traditional NNs, which 
makes the computation partly unsuitable for 
parallelism.  However, from a computational 
perspective, neurosymbolic architectures are 
neural-network centric (parallelizable), which 
translates to the possibility of separating the 
symbolic part [59].

2.3.2  NE

NE is the artificial evolution of NNs using genetic 
algorithms [60].  Stanley and Risto [61], in a 
foundational publication in 2002, described the 
NEAT concept.  They showed how GA can evolve 
not just the connection weights, as an alternative 
to stochastic gradient descent in backpropagation 
of networks, but both the network structure and 
connection weights to significantly enhance the 
performance of the NE network.  The algorithm 
uses the structure to minimize the dimensionality 
of search space.

With the advent of accessible high-performance 
and distributed computing, these NE ideas and 
approaches are reemerging to showcase their true 
potential.  Similar to deep learning, once trained 
with large datasets and scaled to take advantage of 
the distributed computing, recent research showed 
that NE significantly improved the performance of 
its models.  Furthermore, it was found that NE is a 
competitive alternative to gradient-based methods 
for training DNNs and reinforcement learning 
models [61].
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APPLICATIONS OF 
AI FOR WEAPONS 

SYSTEMS

SECTION

03
AI has the potential for application to many facets 
of the weapons systems ecosystem.  It is used to 
control systems, thus enabling autonomy and 
improving the performance to select problems in 
guidance, navigation, and control in challenging 
environments.  Similarly, AI can be used to solve 
challenging problems in mission and path 
planning, thereby achieving a greater level of 
complex mission objectives and operational 
requirements.  AI is also used in the electronic 
warfare domain for support, countermeasure, 
or even counter-countermeasures.  It may also 
be employed in information fusion from various 
system hierarchies and domains to divulge abstract 
high-level value battlefield intelligence and provide 
critical cues and fast-paced decision making 
that will consequently create a valuable tactical 
advantage in modern warfare.

This section of the report will highlight the use 
of state-of-the-art AI methods in the various AI 
problem domains applicable to autonomous and 
weapons systems.  It is organized according to the 
following problem domains.

•	 Autonomy

•	 AI in perception

•	 AI in guidance, navigation, and control

•	 Mission and path planning

•	 Intelligent strategy

•	 Opponent modeling

•	 Cognitive electronic warfare 

3.1  AUTONOMY

3.1.1  Definition, Levels, and Frameworks

To present what is meant by autonomy, we state 
first how it is related to intelligent or robotic agents.  
Since the context of the discussion is geared toward 
weapons systems, the terms “robots,” “agent,” and 
“autonomous system” are used interchangeably 
when discussing AI.

In a broad sense, intelligence is the quality that 
enables an entity to function appropriately and 
with foresight in its environment.  The environment 
in which the agent interacts is essential to 
understanding and designing an autonomous 
system.  In nature, for example, an agent “or a 
complex system” is intrinsically adapted to its 
environment (habitat).  Therefore, the level of 
intelligence needed by the system to perform 
a task is dictated by the environment involved 
[62].  The environment is distinguished by its six 
different dimensions—fully or partially observable, 
deterministic or stochastic, episodic or sequential, 
static or dynamic, discrete or continuous, and single 
agent or multiagent.

The concept of an intelligent system evokes the 
understanding that at least some functions are 
intrinsically performed in an autonomous fashion 
by the system.  Otherwise, the questions then 
become the following:

•	 What is intelligent about it if it cannot 
do a nontrivial task without guidance or 
involvement of a human?
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•	 Is reasoning, learning, or action of the system 
on the environment autonomous?

•	 How about if they are all autonomous—is it 
only then the system is intelligent?

•	 What level of autonomy makes a system 
autonomous when deployed?

•	 Is autonomy simply an automatic system or 
automated system?

The word “autonomy” is derived from the Greek 
words “auto” and “nomos,” which mean “self” and 
“law” or “governing,” respectively.  Autonomy 
applies to a “self-governing” agency, whether it is a 
human, organization, or cyberphysical system.

There appears to be widely persistent semantic 
confusion among automatic, automated, and 
autonomous descriptions of systems.  An automatic 
system is a central component in a cyberphysical 
system whose function is to perform a specific set 
of actions with predefined responses (e.g., flight 
autopilot and a car’s electronic stability control).  
Automated systems are more complex systems 
that function with limited to no human operator 
involvement in a structured environment with 
expected behavior.  The behavior of the automated 
system is traditionally rule-based, aimed at 
performing a specific set of tasks according to 
prescribed rules (e.g., counter rocket, artillery, and 
mortar [CRAM] weapon).

An autonomous system is characterized by the 
ability to select and plan an appropriate course of 
action to reach an objective from its perception 
of the environment, situational awareness, and 
understanding of the local or dynamic context 
[63].  This ability has a direct impact on the amount 
of monitoring and delegation of tasks made by 
the human operator to the system.  The level, 
frequency, and nature of interaction with human 
operators are important aspects in the human-
robot interaction (HRI) study.

While there is a large sample of definitions 
produced by both academia and defense research, 

it is challenging and still ill-defined at what point 
a system becomes autonomous.  But with the 
previous definition in mind, it is reasonable to say 
that an automated system that is partially adaptive 
to a changing environment is trailing onto the 
autonomous realm.  In Russel and Norvig [6], a 
connection was drawn between autonomy and 
adaptation by learning as follows:  “A rational agent 
should be autonomous.  It should learn what it 
can to compensate for partial or incorrect prior 
knowledge.”

Often, the confusion is further exacerbated by the 
assumption that intelligence is an integral part 
of autonomy.  The level of intelligence varies in 
the different type of agents (reflex agent, model-
reflex agent, utility-based agent, goal-based 
agent, and learning agent), with the learning 
agent having a higher form of intelligence.  In 
fact, intelligent systems are characterized by their 
predictive capabilities, uncertainty management, 
and autonomy.  An autonomous system may 
be intelligent if it learns and understands to 
solve problems (predictive capability) and make 
decisions (uncertainty management).

In defense research, the DoD released DoD 
Directive 3000.09 in 2012 (administratively updated 
in 2017) as formal policy on autonomy in weapons 
systems and the DoD AI Ethical Principles in 2021 
for the design, development, deployment, and use 
of AI capabilities [64].

The DoD categorizes a weaponized autonomous 
system according to the level of autonomy as 
follows [65] (see Figure 3-1):

•	 Semiautonomy – a “human-in-the loop” 
designation.  The human operator specifies the 
target and conditions for engagement.  This 
includes the following:

	– Semiautonomous weapons systems with 
engagement-related autonomy functions, 
such as acquisition, tracking, identification, 
cueing, target prioritization, and timing 
of when to fire, or providing terminal 



3-3

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 3

Artificial Intelligence (AI) for Weapons Systems 
DISTRIBUTION STATEMENT A. Approved for public release:  distribution unlimited.

guidance to home in on selected targets, 
provided that human control is retained 
over the decision to select individual 
targets and specific target groups for 
engagement.

	– “Fire and forget” or lock-on-after-launch 
homing munitions that rely on tactics, 
techniques, and procedures (TTPs) to 
maximize the probability that the only 
targets within the seeker’s acquisition 
basket when the seeker activates are those 
individual targets or specific target groups 
that have been selected by a human 
operator.

•	 Supervised Autonomy – a “human-on-the 
loop” designation.  The human operator 
supervises the weapon’s mission and intercepts 
engagement in the event of weapons system 
failure or change in the rules of engagement.

•	 Full Autonomy – a “human-out-the loop” 
designation.  The weapons system initiates 
its target selection and proceeds with 
engagement without the intervention of the 
human operator.

It should be noted that all autonomous systems are 
supervised by a human at some autonomy level 
and the autonomous systems’ software operates 
with the encoded designed limits on the actions 
and decisions [64].

Several categorizations of autonomy levels exist, 
the most prominent of which attempted to provide 
primitive models for autonomous behavior in 
terms of the level of human-robot interaction (HRI) 
independently of context.  Some of these models 
are  “Sense, Plan, Act” (SP&A) (see Table 3-1 [66]), 
“Think Look, Talk, Move, and Work,”  and “Observe, 
Orient, Decide, and Act.”

To facilitate the characterization and articulation 
of autonomy in unmanned systems, the National 
Institute of Standards and Technology (NIST) 
devised a domain-agnostic framework called 
the “Autonomous Level for Unmanned Systems” 
(ALFUS) framework [67].  The DoD’s Defense 
Science Board introduced a domain specific 
framework named “Autonomous Systems 
Reference Framework” (ASRF) [68].

The ASRF taskforce posited that defining 
taxonomies and grouping functions based by 
discrete levels of autonomy emphasize the 
focus on the robot rather than the collaboration 
between human and robot to achieve the 
desired capabilities, results, and effects.  They 
recommended abandoning the use of “levels of 
autonomy” and replacing them with the following:

•	 An emphasis on the explicit allocation of 
cognitive functions and responsibilities 
between human and robots when making 
design decisions.

Figure 3-1.  DoD 3000.09 Definitions of Top Levels of Autonomy (Source:  Deputy Secretary of Defense [64]).
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•	 Tailoring these allocations based on mission 
phase and echelon.

•	 Making high-level system trades in the design 
of autonomous capabilities visible.

3.1.2  Autonomous System’s Functional 
Components

We describe the general concept of an autonomous 
system’s main software functional components 
for the purpose of mapping state-of-the-art AI 
techniques to AI problem domains in autonomy 
(Figure 3-2).  Typical robotic autonomy core’s top- 
level functional components include perception 
pipeline, planning, and vehicle control.

3.1.2.1  Perception Pipeline

Perception provides the ability to sense and 
transform raw sensorial inputs (proprioceptive, 
exteroceptive, and abstract) into usable 
information via the capture, representation, and 
interpretation of environmental cues (e.g., location, 
geometry, motion, spectral content, etc.) for the 
purpose of mission planning, motion control, 
countermeasures, and information intelligence 
[69].  In autonomous systems, perception plays a 
central role in the following [63]:

•	 Guidance, Navigation, and Control:  Perception 
supports the path planning, dynamic 

Level Sense Plan Act Description

1 – Manual H H H The human performs all aspects of the task, including sensing the 
environment, generating plans/options/goals, and implementing processes.

2 – Teleoperation H/R H H/R

The robot assists the human with action implementation.  However, sensing 
and planning is allocated to the human.  For example, a human may 

teleoperate a robot, but the human may choose to prompt the robot to assist 
with some aspects of a task (e.g., gripping objects).

3 – Assisted Teleoperation H/R H H/R

The human assists with all aspects of the task.  However, the robot senses the 
environment and chooses to intervene with the task.  For example, if the user 
navigates the robot too close to an obstacle, the robot will automatically steer 

to avoid collision.

4 – Batch Processing H/R H R
Both the human and robot monitor and sense the environment.  The 

human, however, determines the goals and plans of the task.  The robot then 
implements the task.

5 – Decision Support H/R H/R R
Both the human and robot sense the environment and generate a task plan.  

However, the human chooses the task plan and commands the robot to 
implement actions. 

6 – Shared Control With 
Human Initiative H/R H/R R

The robot autonomously senses the environment, develops plans and goals, 
and implements actions.  However, the human monitors the robot’s progress 

and may intervene and influence the robot with new goals and plans if the 
robot is having difficulty.

7 – Shared Control With 
Robot Initiative H/R H/R R

The robot performs all aspects of the task (sense, plan, and act).  If the robot 
encounters difficulty, it can prompt the human for assistance in setting new 

goals and plans.

8 – Executive Control R H/R R
The human may give an abstract high-level goal (e.g., navigate in environment 
to a specified location).  The robot autonomously senses the environment, sets 

the plan, and implements an action.

9 – Supervisory Control H/R R R

The robot performs all aspects of the task, but the human continuously 
monitors the robot, environment, and task.  The human has override capability 

and may set a new goal and plan.  In this case, the autonomy would shift to 
executive control, shared control, or decision support.

10 – Full Autonomy R R R The robot performs all aspects of a task autonomously without human 
intervention with sensing, planning, or implementing action.

Table 3-1.  SP&A-Based Levels of Autonomy [66]

Note:  H = human and R = robot.
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replanning, motion control for single-
agent systems, and motion coordination in 
multiagent systems.

•	 Planning:  Perception provides mission sensing 
and abstract cues for strategizing mission and 
scenario planning, teaming, and coordination.

•	 Diagnostics and Fault Management:  
Perception provides fault detection and system 
health management by detecting anomalies 
and fault patterns leading to failure for 
subsequent online mitigation or management 
(functional component not explicitly shown).

•	 Situational Awareness:  Perception provides 
the hierarchical information about targets and 
obstacles in the environment to detect and 
articulate context understanding in scenes 
and scenarios.  Perception is key in obstacles 
detection and discrimination (e.g., detection 
and discrimination between submerged 

moving targets, mines, and underwater 
dwellers).  Perception may be externally aided 
by additional data from distributed perceptive 
sources via ground station or command and 
control systems.

Sensors vary widely in autonomous systems, 
depending on the system mobility platform and 
the environment.  These devices can provide 
valuable information about the state of the system 
(proprioceptive sensors) as well as changes made 
to the environment or experienced by the system 
as a result of its interaction with the environment 
(exteroceptive).  Examples of exteroceptive sensors 
are Global Positioning System (GPS), magnetic field 
sensor, sonar, radar, altimeter, laser rangefinder, 
red-green-blue (RGB) camera, and spectral sensors.  
Examples of proprioceptive sensors include 
inertial measurement unit (IMU), alpha/beta vanes, 
anemometers, and odometers.

• Sensing
• Sensor fusion
• Localization
• Semantic

Understanding
• World Model
• Situational awareness

• Trajectory Generation
• Reactive control
• Mode Selection
• Vehicle abstraction
• Fault tolerant control

Perception

Planning

Vehicle Control

Guidance/Trajectory 
Tracking

Map

Tasking/Scheduling

Mission 
Planning

Perception

Path 
Planning

Motion 
Planning

Vehicle
Control & Stabilization

Actuators/Effectors

Sensors

GPS/IMU
Lidar

Camera
Altimeters

Sonar
Radar

Localization

Navigation

• Trajectory execution/
Guidance

• Regulation and 
Stabilization Control

Problem Domains

GN&C
Navigation Guidance Control Perception Path Planning

Figure 3-2.  Autonomy Functional Components (Source:  QinetiQ).
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In perception, for example, sensor fusion is used 
to combine visual target state data from cameras, 
ranging devices such as light detection and ranging 
(LiDAR) or sonar, and velocity from Doppler radar 
to provide more accurate positioning and tracking 
information of targets.  Information fusion may 
also be used to incorporate abstract information 
(e.g., temporal cues of activities, profile, image 
registrations, and georegistration) with specific 
models to obtain high-level abstraction object 
state estimates.

While it may be external to perception pipeline, 
the localization function provides continuous 
estimates of the autonomous system position, 
velocity, attitude, altitude rate, and acceleration 
among other states pertaining to platform motion 
state in its environment.  The localization layer in 
the autonomy stack leverages typical domain-
specific sensor fusion techniques suited for specific 
mobility and environment.

The navigation function is responsible for 
generating a map of the autonomous system’s local 
environment and the detection of any hazards that 
might impede mission progress so that a collision-
free navigation path from its current location is 
determined.  To execute the mission, this function 
processes data from the localization and perception 
functions (sensing the environment) to ascertain 
the autonomous system’s behavior or motion on 
the map.

3.1.2.2  Planning

The planning function produces a sequence of 
actions or behaviors the autonomous system must 
follow from a specified starting configuration (or 
position) to its final goal (or destination) while 
avoiding obstacles and appearing impediments 
in its path in accordance with mission objectives.  
These mission objectives may be metric (e.g., 
smooth trajectories) or symbolic (e.g., avoid 
georegistered obstacle).  From the perception layer, 
the planning function receives the autonomous 
system position, detected obstacles information, 

map, and mission objectives to solve three layers 
of planning abstraction—mission planning, path 
planning, and motion planning.  State-of-the-art 
planning algorithms feature adaptive capability to 
the changing environment, such as agile mission 
replanning to engage targets of opportunity.  This 
feature requires sensor cuing, context change 
detection, root cause analysis, mission impact 
analysis, and agile replanning.

3.1.2.3  Vehicle Control

In the control function, the combined outputs 
from navigation, planning, and perception are 
transformed into allocated commands for the 
different effectors on the mobility platform, 
therefore affecting its motion.  Platform motion is 
controlled by different levels of control algorithms.  
Medium-level controls (e.g., autopilot) are either 
the guidance algorithms that ensure the vehicle 
trajectory closes in on the target trajectory or 
trajectory tracking algorithms that ensure the 
tracking of the generated trajectories in the 
planning layer and that the path deviation error is 
minimized.  Low-level control are algorithms that 
stabilize and regulate motion via actuations.  The 
control function can also have an aggregate control 
function, such as payload control or weapons 
subsystems control.

3.2  AI IN PERCEPTION

We highlight the state-of-the-art technologies 
associated with perception in the typical autonomy 
top-level functional architecture.  These AI 
techniques apply to the perception pipeline in both 
autonomy core software and payload ISR systems.  
AI techniques for autonomy include techniques to 
support the understanding of the environment and 
support for motion and behavior control, such as 
obstacle detection, self-localization and mapping, 
and motion state estimation.  AI techniques for 
ISR systems support situational awareness, scene 
understanding, automatic target, and activity 
recognition and tracking.
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3.2.1  Image Segmentation

Semantic understanding is the task of associating 
semantic meaning to image content to construct 
understanding and context.  Image segmentation 
is particularly important to scene or visual 
understanding.  There are three main categories of 
segmentation—semantic, instance, and panoptic 
(see Figure 3-3).

3.2.1.1  Semantic Segmentation

Semantic segmentation aims to classify objects in 
an image at the pixel level by the following three 
subtasks [70]:

1.	 Classifying a certain object in the image.

2.	 Localizing it by finding the object in a 
bounding box.

3.	 Grouping the pixels in a localized image by 
creating a segmentation mask.

Important improvements have been achieved 
in recent years, and some of the prominent CNN 
architectures for semantic segmentation are 
DeepLabV2, PSPNet, and ParseNet.

3.2.1.2  Instance Segmentation

Instance segmentation refers to the technique 
of detecting, segmenting, and classifying every 
individual object in an image.  This technique 
combines semantic segmentation and object 
detection and therefore produces a richer output 
format as compared to object detection and 
semantic segmentation networks separately [71].

A state-of-the-art model for instance segmentation 
is Mask Region-based Convolutional Neural 
Network (R-CNN).  Based on the ResNet topology 
(ResNet-50), this augmented network provides 
object segmentation with added mask information.  
The outputs are class label of the detected object 
(ResNet-50), bounding box offset (feature pyramid 
network), and an output of the object mask for the 
purpose of extracting a much finer spatial layout of 
an object [71].

3.2.1.3  Panoptic Segmentation

Panoptic segmentation is a state-of-the-art image 
segmentation technique that unifies sematic 
and instance segmentation methods.  Objects 
to be segmented are assigned two labels to 
each of the pixels of an image:  (1) semantic label 
and (2) instance ID.  State-of-the-art panoptic 
segmentation is the DEtection TRansformer 
(DETR) framework that provides end-to-end 
object detection.  The framework showed 
accuracy and run-time performance on par with 
the highly optimized, faster R-CNN baseline 
and outperformed competitive baselines on 
the Common Objects in COntext (COCO) object 
detection dataset [72].  Another common related 
framework is the Detectron2.

3.2.2  Target Detection, Classification, and 
Scene Understanding

In the next sections, we highlight notable advances 
in perception in major image-based database 
challenges using state-of-the-art DNN topologies 
for image and video data.

Figure 3-3.  Semantic (b) vs. Instance (c) vs. Panoptic (d) 
Segmentations (Source:  V7Labs).
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3.2.2.1  Image Techniques

The following techniques are intrinsic perception 
technologies of visual knowledge extraction, 
particularly in object classification, image context, 
and human-machine interaction [3]:

•	 Image Classification:  The ability to categorize 
what is seen in the image.  Image recognition 
is used to identify pedestrians in car driving, 
categorize specific objects in an image or video, 
detect tumors in diagnostic system, and detect 
defects in productions.  In the 2021 ImageNet 
Challenge, Top-5 (five first probabilities aligned 
with the labeled image) was achieved by 
Microsoft AI’s Florence-CoSwim-H model, with 
a 99.02% accuracy.

•	 Image Generation:  The ability to generate 
images that are indistinguishable from real 
ones.  This task typically uses GANs, and the 
similarity metric (similar to real images) uses 
the Frechet Inception Distance score.

•	 Human Pose Estimation:  The ability to estimate 
different human body posture and joint 
kinematics to correctly label the human pose 
for different applications—activity analytics, 
target surveillance, and crowd activity 
monitoring.  The latest advances in deep 
learning models achieved 99.5% human pose 
estimation accuracy on the Leeds Sports Poses 
dataset.

•	 Semantic Segmentation:  The ability to assign 
individual image pixels a class or category, 
such as a human, background, or building.  
Autonomous systems applications, such as 
a self-driving car, require pixel-level image 
segmentation (to identify which parts are a 
human in the field of view and which are other 
cars and roads), image analysis (distinction 
between background and foreground in 
photos), and aspects that deal with occlusions.  
The 2021 top-performing AI systems on the 
challenging Cityscapes dataset (database 
containing images from urban street 
environments from 50 cities taken during the 

daytime in different seasons) achieved 86.20% 
accuracy.

•	 Visual Reasoning:  The goal of this task is to 
develop an AI that can reason broadly across 
a combination of visual and textual data.  
While existing AI already excel at narrow 
visual classification, face detection, and object 
segmentation at a level far exceeding humans, 
this is a challenging and active area of research 
because it requires more abstract reasoning 
to generate valid inference about actions and 
intent of subjects in an image.

•	 Visual Questioning Answering (VQA):  This area 
combines language understanding, vision, 
and common-sense reason in an AI.  This 
technology answers some of the challenges 
in the Explainable AI domain in which the AI 
answers open-ended questions about images 
at a high level.  Top-performing AI in the 2021 
VQA challenge achieved 79.8% accuracy 
close to a human baseline of 80.8%.  An AI 
created by a collaboration between Google 
Research, Michigan State University, and 
Brown University achieved 89.6% accuracy on 
the Kinetics-600 dataset (database of video 
displaying a wide range of human activities).

3.2.2.2  Video Techniques

The listed video techniques use the temporal 
information between image frames to detect 
patterns and infer visual knowledge central to 
ISR and autonomous weapons, such as target 
acquisition and cueing, situational awareness, 
scene understanding, and human-machine 
interaction [3].

•	 Activity Recognition:  The ability to identify 
activities that occur in videos ranging from 
walking to more complex, coupled activities 
like preparing for something good or bad.  This 
requires the AI to recognize and chain discrete 
actions together to determine the abstract top-
level activity. 
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•	 Object Detection:  The ability to identify objects 
within an image.  This involves two major set 
methods:  (1) one that prioritizes speed for real-
time operation but is slightly less accurate—
You Only Look Once (YOLO), RetinaNet, and 
SSD and (2) two-stage methods that prioritize 
accuracy, such as Faster R-CNN, Cascade R-CNN, 
and Mask R-CNN.  YOLO achieved a mean 
average precision (MAP) of 80.7% by 2021, 
while Faster R-CNN achieved 87.69% MAP.

•	 Visual Commonsense Reasoning (VCR):  A new 
benchmark for visual understanding aimed 
at answering questions about a scenario 
presented from image frames and providing 
reasoning behind the answers.  Since the 
introduction of this challenge, visual common-
sense reasoning has improved significantly; 
however, the scores are still below the human 
baseline of 85%.  The current best mark on VCR 
is about 72%.  Improvements have become 
increasingly marginal, which suggests new 
techniques may be required to further improve 
performance closer to human baseline.

3.2.3  Sensor Fusion

Sensor fusion concerns the ingestion and 
unification of information from a variety of sensors 
taking different measurements.  Multisensor 
data processing goes back to the early inertial 
navigation systems when signals from gyroscope 
signals, accelerometers, and magnetometers 
were combined to create a less uncertain state 
estimation than the separate measurements 
from each different sensor.  In the context of an 
autonomous system, multisensor fusion is the 
exploitation capability to decode information from 
multiple heterogenous sensors to infer context 
and obtain a fused singular “view” of the sensed 
environment.  AI techniques have been leveraged 
to improve this important processing function in 
perception and localization.  Examples of sensor 
fusion of perception are described next.

Blasch and Zheng [73] presented a multimodal 
imaging fusion for the simultaneous context-

aided tracking and identification of physics-based 
and human-derived information.  The modalities 
exploited were electro-optical visual imaging 
and infrared imaging.  The fusion augmented the 
imagery with context via content colorization 
and enables environment interpretability for 
explainable intelligence.

Huang et al. [74] proposed a novel integrated DNN 
structure that leverages multimodal sensor fusion 
processing and scene understanding for end-to-
end autonomous driving.  The structure provides 
concurrent scene segmentation and guidance 
commands to vehicle steering and speed control 
systems.  The structure is composed of three 
networks—multimodal sensor fusion encoder, 
scene understand decoder, and conditional 
driving policy network.  Multimodal sensor fusion 
encoder is the ResNet-50 V2 structured residual NN 
that receives the concatenated RGB and (LiDAR) 
depth imagery and outputs the features map.  
The scene understanding decoder processes the 
features map via deconvolutional layers, with a 
softmax activation function for the last layer and 
ReLU activation functions for the previous layers.  
The output of the scene understanding is the 
categorization of each pixel in the original image, 
with explicit expressions of the driving scene.  The 
conditional driving policy network gets the global 
average pooled feature map as an input from the 
multimodal sensor fusion encoder and outputs the 
desired speed and steering control signals.  When 
the structure is trained as a whole, it shows 100% 
success rate in navigation tasks in training and 
unobserved circumstances.

3.3  AI IN GUIDANCE, NAVIGATION, AND 
CONTROL

Control is a broad term but generally used within 
a specific context.  Consider the context of 
multidomain battlefield management.  Control in 
this context may refer to the tactical instructions 
generated by the decision making of high-
echelon commands or the control of operations, 
such as logistics, inventory control, and resource 
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allocations.  In command and control, control 
may refer to the supervisory task of systems and 
humans, but it may also refer to instantiation 
of mission and online planning.  In multiagent 
systems, control is specified in terms of how agents 
are controlled, in which case, it can be centralized, 
decentralized, or hierarchical.  In its low-level 
representation, control addresses low-level tasks, 
such as tracking and regulation functions found 
in the guidance, navigation, and control (GN&C) 
problem domain.

We provided an overview of the research and 
application of AI in the traditional field of GN&C.  
While the relation of GN&C to the more modern 
framework of autonomy was articulated in Section 
3.1.2, GN&C functions were not explicitly defined.  
We first explained what GN&C functions solve in an 
autonomy stack.  We then made a contrast between 
the traditional GN&C methods in conventional 
weapons and those aided by AI for improved 
systems performance, followed by the GN&C areas 
in which AI techniques (navigation and localization, 
intelligent control, and system identification) were 
integrated.

3.3.1  GN&C Systems

GN&C are important problem domains that address 
the design of system segments controlling and 
supporting the missions of bodies in motion.  From 
putting satellites in orbits and guided munitions 
to navigating submarines, these systems are 
absolutely necessary to autonomous systems’ 
motion control and subsequently the achievement 
of mission objectives.  GN&C systems are described 
as follows:

•	 A navigation system that measures the 
instantaneous state of the vehicle.  The state 
of the vehicle contains kinematic states, 
such as position, velocity, attitude/pose, and 
uncertainties in the sensor measurements, 
and, if applicable, other states particular to the 
vehicle mobility, such as angle-of-attack angle 
and side-slip angle.

•	 A guidance system that computes the optimal 
trajectory and the corresponding vehicle 
steering commands so optimal trajectory is 
realized.  The guidance system continuously 
recomputes the remaining path and desired 
altitude of the vehicle to achieve the mission 
goal.  Examples of guidance algorithms are 
Line-of-Sight, Pure Pursuit, and Constant 
Bearing.

•	 Control system receives the steering 
commands from the guidance system and 
steers the vehicle to follow the desired altitude 
in the presence of all disturbances.  The control 
system has three major functions:

1.	 Stabilize the vehicle throughout the mission.

2.	 Steer the vehicle to follow the desired 
altitude as dictated by the guidance system.

3.	 Maintain vehicle loading within desired 
limits.

3.3.2  Conventional Control-Theoretic Methods

The conventional process of designing an 
automatic control system entails:  (1) physics-
based modeling of the system dynamics and 
environment typically described by differential 
equations and (2) a control architecture suitable 
for the system case and performance requirements 
at hand.  Estimation of errors (process parameters, 
uncertainties, and sensor errors) are also part of the 
modeling effort.  For systems for which there is no 
explicit mathematical model, system identification 
techniques are used to build an approximate model 
that describes the system from the input and 
output data.

While control theory-based methods provide 
numerous, rigorous frameworks (robust, optimal, 
nonlinear, adaptive control frameworks, etc.) 
for the analysis and controller synthesis of large 
class of control problems centered around global 
stability guarantee, adapting to complex nonlinear 
systems in a time-varying environment, however, 
remains a challenge and constitutes a major area 
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of research in the control-theoretic paradigm.  
Model representations of disturbances, errors, 
and systems parameters variation are far from 
exhaustive or fully defined to globally represent the 
uncertainties in the environment.  As such, changes 
in the environment may introduce uncertainties 
that are unknown and, hence, may not be 
characterized during controller design.

Consider the objective of designing a control 
system that allows for extreme maneuverability of 
a UAV (e.g., aerial acrobatics and missile evasion) 
or a humanoid robot walking over a wide range 
of terrains and obstacles.  While physics-based 
modeling of the system (flight mechanics, 
anthropomorphic robot kinematics/dynamics, 
actuators, etc.) is straightforward, the inherent 
nonlinearities and complex large environment 
state space in this case render the control design 
using control-theoretic approach a difficult 
undertaking.  Furthermore, an accurate closed-
form mathematical expression of the performance 
criterion that captures implicit systems dynamics, 
environment interaction, and control limitations is 
not easily derived [33, 74].

A control-theoretic approach like model 
reference adaptive control is the closest to a more 
generalized control scheme that ensures stability 
during system parameter variation, unmodeled 
disturbances, or environment changes.  But the 
stability guarantee assumes a linear or linearized 
model of the system.  Therefore, if the model is not 
matched to the actual system, then the closed loop 
stability is no longer guaranteed [75].  Furthermore, 
adaptive control schemes suffer from extensibility 
limitations and are often prone to numerical 
tractability issues [34].  In terms of nonlinear 
control, geometric methods, such as adaptive 
sliding mode control, are prone to the chattering 
effect [76].  Additionally, solving a discrete optimal 
control problem by dynamic programming may 
lead to intractable solutions due to the large 
number of states and, consequently, the curse of 
dimensionality [77].

The goal of intelligent control is to provide an 
alternative approach for adaptive nonlinear 
control of complex dynamics.  An advantage of 
intelligent control is the built-in ability to learn and 
adapt to unknown dynamics in the environment.  
An example of such adaptation is flight in wind-
varying conditions, a robotic manipulator arm 
handling a different object, and a quadruped robot 
walking over changing terrains.

3.3.3  Intelligent Control

Intelligent control refers to advanced techniques 
that combine ML with theory-based techniques 
for the control of complex, nonlinear, dynamic 
systems.  Being an active area of research, common 
names in the academic research are data-driven 
control or ML control.  In this section, we discuss 
AI-based techniques applied to control—hybrid 
methods (DNN + control-theoretic scheme and 
DeepMPC), reinforcement learning, and imitation 
learning.

3.3.3.1  DNNs

As stated in Section 2.1.1, DNNs can be used 
to approximate highly complex multivariate 
mapping; when combined with adaptive control 
schemes, hybrid methods provide improved online 
adaptation to time-varying dynamics [78].

An interesting control strategy/scheme from Shi 
et al. [79] demonstrated precise quadrotor landing 
by integrating deep-learned dynamics with a 
nonlinear, discrete, fixed point iteration controller.  
Prior related contributions provided no rigorous 
treatment of the effect of learning on the stability.  
The significance of this noteworthy approach stems 
from the exponential global stability guarantee 
provided that the training errors are bounded.  
This is achieved via formulating the training error 
cost function with Lipschitz-bound and spectrally 
normalized layers of the DNN.  The network 
used ReLU activation functions to eliminate the 
possibility of a vanishing gradient associated with 
other activation functions; it learned coupled 
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unsteady aerodynamics and vehicle dynamics, 
which were rolled into the synthesized nonaffine 
control input [80].

In Lin et al. [81], an intelligent entry guidance 
algorithm was proposed that has a variation of the 
Numerical Predictor-Corrector Guidance (NPCG).  
The NPCG determines the bank angle amplitude 
and direction based on the prediction of a trained 
DNN and constraint management algorithms (path 
and terminal constraints).  The DNN was trained 
to predict the nonlinear mapping between flight 
states and cross/down ranges in real-time.  The 
algorithm corrected longitudinal trajectory and 
addressed the lateral bank reversal.

The work demonstrates relative fault tolerant 
predictions such that if the DNN prediction output 
is outside acceptable error bounds, the dynamic 
propagation technique takes over the range 
prediction.  The DNN-based prediction offers 
significant improvement of real-time performance 
while meeting the constraints requirement.  This 
trained DNN demonstrates operational utility of 
a DNN model for intelligent system control of a 
hypersonic munition during reentry maneuvers.  In 
simulation tests, it performs as well as traditional 
state-of-the-art predictor-corrector algorithms 
currently in use by most systems.

Du et al. [82] presented a Bank-To-Turn lateral 
control scheme for reentry of a hypersonic vehicle 
that combines a control-theoretic approach, 
namely nonlinear generalized predictive 
control (NGPC) with a proposed Self-Organizing 
Recurrent Function Link Network (SORFLN).  The 
RNN-based SORFLN adaptively corrects for the 
errors in the nominal NGPC during disturbances 
and uncertainties and dynamically reorganizes 
to reduce the number of learning parameters.  
Simulation results showed that the proposed 
algorithm overcame large uncertainties or 
disturbances while showing lateral-maneuver 
stability; this effectively demonstrated utility of 
a small size DNN for satisfactory performance in 
reentry control.

Takahashi et al. [83] proposed an adaptive 
compensator for the accurate trajectory control of 
a three-link robot manipulator using quaternion 
RNN.  The network was trained by feedback error, 
and the RNN’s adaptive compensation input is 
synthesized online and added to the control input 
as a torque command to the manipulator.  Test 
results showed that the proposed method was 
an effective, adaptive control scheme, once again 
showing the applicability of AI systems for use in 
control software.

3.3.3.2  Reinforcement Learning

Reinforcement learning was presented in Section 
2.1.2 as a family of learning algorithms suitable 
for the action control of stochastic processes.  It is 
also applied to high-level abstract motion control 
of robotics and autonomous systems.  We present 
select applications of RL-based methods to motion 
control.

Kumar et al. [84] presented a model-free, RL-based 
algorithm for the rapid motor adaptation of 
a quadruped robot.  The algorithm executes 
online adaptive locomotion control via base 
policy network and an adaptation network.  The 
base policy network and adaptation network 
are trained offline in a simulated environment 
and then deployed on the robot platform to run 
asynchronously.  The training takes place in the 
physics-based simulation in two phases.  The first 
phase trains from past actions as well as the output 
from an encoder network that maps environment 
parameters (e.g., mass, friction coefficients, terrain 
height, and motor constants) to a latent extrinsics 
vector.  The base policy network and encoder are 
trained jointly in the first phase.  In the second 
phase, the adaptation network trains from the 
history of states and actions on the on-policy data 
to predict the extrinsics vector.  The significance of 
the method resides in the adaptability of this outer 
loop, RL-based control scheme to handle a plurality 
of environmental changes, such as terrain type and 
composition, payloads, wear and tear, and other 
unseen disturbances.
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In Dooraki and Lee [85], a bioinspired flight 
controller of a quadcopter based on RL was 
demonstrated in a simulated environment against 
a conventional, model-based control scheme called 
Model-Predictive Control.  The RL used a modified 
Proximal Policy Optimization method to train the 
controller autonomously—from a tabula rasa (clean 
slate).  The results demonstrated fast adaptation 
and better maneuvering capability.

Chithapuram et al. [86] used RL’s Q-learning 
algorithm for UAV guidance toward a target and 
analyzed the results against the Proportional 
Navigation Guidance (PNG) algorithm.  It was 
found that the guidance law based on Q-learning 
performed better compared to PNG with a 62.67% 
hit rate compared to the 18.67% hit rate of the PNG.

In Wang et al. [87], a DRL-based backstepping 
controller was used to control an air-breathing 
hypersonic vehicle with actuator constraints 
(magnitude and rate constraints).  A Lyapunov 
function was selected for the nominal 
backstepping controller, and a DRL-based 
parameter adjustment algorithm was used to tackle 
the controller performance degradation due to 
the system actuator’s constraints and aerodynamic 
coefficients’ uncertainties.  Monte-Carlo simulation 
showed tracking stability and robustness of the 
proposed schemes against 20% model parameters 
variations from nominal values.

Furfaro et al. [88] used extreme learning machines 
based on the RL algorithm Advantage Actor Critic 
for the guidance and control of hypersonic reentry 
vehicle under maximum heat-rate avoidance and 
control constraints.

Iwasaki and Okuyama [89] developed an intelligent 
control stage based on DRL that extends the 
capability of an existing control theoretic scheme 
and improves its performance.  The extension 
adds arbitrary control that would otherwise 
be impossible to design via control-theoretic 
approach.  The example provided is an inverted 
pendulum command from swing to inverted 

stabilization using an intelligent reference signal 
for each state of the system that combines with the 
reference signal of the existing controller.

3.3.3.3  Imitation Learning

In cases when the reward function is sparse or 
unobtainable due to the complexity of the task, 
imitation learning offers an optimal policy by 
imitating the expert decision and actions.  Imitation 
learning is useful when an expert’s desired behavior 
demonstration is easier than specifying a reward 
function.

In Abbeell [90], the flight controller of an 
autonomous helicopter was trained by 
apprenticeship learning, a form of imitation 
learning, using supervisory input of pilot 
commands and maneuvering to guide the 
reinforcement learning process.  The results 
demonstrated that the flight control not only 
mimicked the pilots’ maneuvers but performed 
exceedingly difficult maneuvers that were 
challenging to attain via conventional controller 
design due to the highly nonlinear nature of the 
dynamics.

Generative adversarial imitation learning (GAIL) is 
a form of imitation learning that can train policies 
without explicit definition of a reward function.  In 
Couto and Antonelo [91], a GAIL-based solution was 
proposed for autonomous navigation of a vehicle 
in the realistic CARLA simulation environment for 
urban scenarios.  Two similar GAIL architectures 
were compared where one was augmented by 
behavioral cloning.  The simulated tests showed 
that both architectures demonstrated expert 
trajectory imitation capabilities from start to end 
of the trajectory.  However, the behavioral-cloning, 
augmented network achieved better results in 
terms of convergence time and training stability.

GAIL has also been used to control the locomotion 
of the MuJoCo humanoid skeleton using 3-D pose 
estimation from a motion capture video of human 
walkers as expert input [92].
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3.3.3.4  Deep Model Predictive Control

Model predictive control (MPC) is a control-
theoretic scheme where a model is used to predict 
the future behavior of the system over a finite 
horizon (time interval).  The optimal control input, 
given a control objective and subject to system 
constraints, is computed based on the model 
output (predictions) and the current estimation 
or measurement of the state [93].  Deep model 
prediction control (DeepMPC) is an approach to 
model learning for predictive control designed 
to handle variations in a system’s (e.g., robot) 
environment and variations during system actions.  
As the name suggests, the approach is constituted 
of a DNN structure combined with the MPC scheme 
[94].

Bieker et al. [95] presented a novel DeepMPC 
framework in aerodynamics and fluid flow 
applications.  The framework used only low-
rank features of the fluid flow to improve control 
performance considerably.  RNNs were used 
to predict the dynamics of the reduced order 
of the fluid state.  The framework was tested 
against several computational fluid simulation 
models (finite volume numerical solver for the 
incompressible 2-D Navier-Stokes equations).  
The results indicated good performance and 
showed the effectiveness and potential of 
DeepMPC for the control of high-dimensional 
systems.

When considering the potential use of DeepMPC 
in controlling a robot, one important consideration 
is the objective function, which must be precisely 
defined by a human engineer.  In layman’s terms, 
this is similar to programming a robot to act with 
a specific goal in mind, such as getting from A to B 
as quickly as possible without an unacceptable risk 
of crashing.  In the fluid flow study, the objective 
functions related to stability of fluid flow around 
simulated rotating cylinders.  The study aimed 
to show how the cylinders could rotate without 
destabilizing the fluid flow.

A survey of the literature on AI methods for the 
low-level controls of dynamics system shows 
that current techniques (e.g., reinforcement 
learning and deep learning) do not provide a 
global stability guarantee.  Hybrid methods like 
DeepMPC or DNN+ adaptive controller offer 
limited stability guarantee.  As of the writing of this 
report, AI techniques like reinforcement learning 
and DeepMPC are mostly applied to high-level 
control (outermost loops).  The control-theoretic 
approaches are applied in low-level controls in 
autonomous systems to guarantee stability and 
meet safety-critical requirements.

3.3.4  Localization and Navigation

In robotics or ground autonomous system 
applications, localization provides simultaneous 
positioning and mapping within the autonomous 
system’s environment.  The perception layer may 
provide visual odometry, objects tracking, and 
points cloud data within the environment that 
are then used by the localization layer to generate 
grid maps, terrain data, and positioning of the 
autonomous system and said objects within the 
map.  Some state-of-the-art localization techniques 
are simultaneous localization and mapping (SLAM)-
based algorithms, such as ORB-SLAM [96] and 
Dense Piecewise Planar Tracking and Mapping [97].

In UASs, localization produces pose estimate in 
the inertial frame. This is achieved via the state 
estimator fusing data from a plurality of sensors 
(e.g., IMU, GPS, Kollsman altimeter, Doppler 
altimeter, visual odometry, digital compass, etc.).  
The techniques used are the unscented Kalman 
filtering, extended Kalman filtering, particle 
filtering, and square-root-cubature Kalman filtering.

In underwater unmanned vehicles (UUVs), the 
localization accuracy is degraded due to the 
unavailability of global position information in an 
underwater environment.  The accuracy is bounded 
by periodic resurfacing or the performance of 
the dead-reckoning algorithms in which error 
from drift is proportional to the distance traveled.  
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Accurate navigation is possible using sonar 
image registration coupled with localization 
within preloaded underwater acoustic maps of 
the seafloor or dead reckoning.  State-of-the-art 
techniques use underwater SLAM algorithms [98].

An example of AI-assisted robot navigation 
algorithm is proposed by Shen et al. [99], in 
which ML enhances the fusion algorithm (state 
estimation) in a GPS-denied environment.  The 
algorithm is a hybrid navigation solution called the 
self-learning, square-root-cubature Kalman Filter 
that seeks to improve the state estimation and error 
prediction ability by introducing the LSTM network 
to provide more stable positioning information 
during prolonged GPS outages.

3.3.5  System Identification

System identification can be understood as the 
retrieval of mathematical models that describe 
system dynamics from active excitation of input 
and output signals (or output signals only, 
known as blind system identification).  System 
identification can be expressed as a transfer 
function, analytical function, differential, 
or difference equation.  Expressing system 
identification can be a form of art where one 
must be cognizant of their assumptions about 
system complexity, model structure, and statistical 
properties of the underlying dynamics when 
assessing their results.

The versatility of AI has led to its adoption as a tool 
for generalized regression and inference problems 
in science and engineering, specifically, in data-
driven modeling of highly complex dynamic 
systems.  Modeling aims only to predict or identify 
the system under study; it is not concerned 
with control or recommending action.  Weather 
modeling is an example of system identification.  
It is aimed at identifying a system to predict the 
weather; it does not recommend any action.  The 
forecast may inform one’s decision to go on a hike 
tomorrow or not, but the model itself does not 
make a recommendation.

Examples of the ML techniques applied to 
system identification and mapping function 
approximation are described next.

Kube et al. [100] applied autoencoders for 
learning low-dimensional representation of 
sample time series of fluctuation-driven flows in 
Tokamak-confined fusion plasma and for outlier 
rejection.  Sakurada and Yairi [101] showed that 
autoencoders perform better in anomaly detection 
when compared to kernel-based PCA in nonlinear 
dimensionality reduction.

Bakarji et al. [102] applied time-delay embedding 
and DNN to the model discovery of partially 
measured nonlinear systems with hidden dynamics 
and latent or unmeasured variables.  The input to 
the network was the singular value decomposition 
compressed delay eigenvectors, and the output 
from the process was reversed to divulge the full-
state dynamics.  The method was verified against 
a Lorenz attractor and waterwheel Lorenz system.  
While the resulting analytical reconstructions did 
not always match the actual original system, the 
discovered latent variables and their underling 
models share key structural features with the 
original system “when known.”  Overall, the method 
discovers systems models like the original system 
when initial conditions are perturbed around the 
original coefficient.

In terms of time-series modeling, Guo et al. 
[103] proposed an interpretable LSTM network 
for predicting a multivariable time series signal 
with exogenous variables.  The application of 
an LSTM network to a multivariable function 
with exogenous input for the output prediction 
and time-series forecasting showed the least 
mean-squared-error (MSE) when compared in a 
benchmark test to random forest, extreme gradient 
boosting, and dual-stage, attention-based RNN.

Nonlinear Auto-Regressive with eXogenous Input 
(NARX) is a powerful tool for system identification 
and on-line system parameters estimation (Figure 
3-4).  In Liu and Song [104], NARX was used in 
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identifying a nonlinear system for control.  Its 
network was trained by a state observer stage 
(Levenberg-Marquardt algorithm).  NARX 
outperformed several RNN variants, and the results 
showed the least root MSE.

In recent years, research in AI or ML control 
methods, namely DRL-based and hybrid methods, 
such as deepMPC, has showed important results 
and potential.  This is because these methods can 
tackle several highly nonlinear control problems 
operating in uncertain and complex environments 
and address some of the limitations in a control-
theoretic paradigm.

As mission complexity and the demand for 
cross-functional and abstract control increases, 
control-theoretic approaches (e.g., physics-based 
maneuvering of combat aircrafts) might become 
prohibitive due their extensively iterative and 
laborious design process.  These approaches might 
not meet the adaptability and mission-criticality 
requirements of human-robot interactions and 
tomorrow’s warfare.

An example of the initiative to use AI in weapons 
systems control in complex settings is DARPA’s ACE 
program [105] (Figure 3-5).

3.4  MISSION AND PATH PLANNING

Mission and path planning is an important 
control function in a robotics and autonomy 
stack.  It involves computing the optimal path 
or quasioptimal path from a source point to a 
destination point.  For dynamic environments, it is 
a nonpolynomial time (NP-hard) problem whose 

complexity increases exponentially with higher 
degrees of freedom of the states [106].  The optimal 
path may have to meet multiple objectives under 
multiple constraints.  Path-planning optimization 
is typically divided into path search methods 
and trajectory optimization problems [107].  
Path search methods are solved by heuristic and 
metaheuristic algorithms, such as graph methods, 
swarm intelligence, and evolutionary methods.  
Path search methods offer a rich set of solutions 
that attempt to tackle uncertainty and complexity 
while adhering to the modern control objectives 
and performance requirements.

Knowledge of the environment determines 
whether path planning is solved at a global or local 
level [108].  Global path planning finds the optimal 
path in a static and completely known environment 
to the autonomous system.  The path is determined 
from start to final point before the autonomous 
systems begin controlling its trajectory along 
the determined path.  Local path planning is an 
imperfect information traversal scenario in which 
the goal is to find a new path in an unknown or 

Estimated Output

Output

Input Tapped Delay

Tapped Delay
Nonlinear Mapping
Multi-layer Perceptron

Figure 3-4.  MLP-Based NARX Architecture (Source:  QinetiQ).

Figure 3-5.  Air Combat Evolution (Source:  DARPA [105]).
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changing environment while the autonomous 
systems are moving within and sensing its 
environment.

An effective path-planning algorithm needs to 
meet the following four performance criteria [109]:

1.	 Motion planning must provide the optimal 
path in realistic static environments in a robust 
fashion.

2.	 Motion planning must be expandable to 
dynamic environments.

3.	 Motion planning must remain compatible with 
a chosen self-referencing approach.

4.	 Motion planning must minimize complexity 
and computational resources.

The following sections survey selected state-
of-the-art algorithms applied to mission, path, 
and behavior planning of single and multiagent 
systems while meeting these path-planning 
criteria.  Methods briefly summarized include 
evolutionary-based algorithms like Genetic 
algorithms (GAs) and Swarm Intelligence 
algorithms.

3.4.1  GAs

GAs, a subfamily of Evolutionary algorithms 
inspired by the theory of natural selection in 
biological evolution, relies on operators, such as 
mutations or selections in each system.  In Kusyk 
et al. [110], a GA was used to control the motion of 
a swarm of 20 UAVs in a Mobile Ad-hoc Network 
network topology.  Unlike a centralized control 
with a preplanned mission or rule-based procedure 
that suffers from their lack of adaptability to a 
dynamic environment, susceptibility to collisions, 
and slow operational responses, this near-real-time 
algorithm is computed by each UAV considering 
only its state and local information.  The UAVs 
broadcast its global position and position of the 
neighboring UAVs within communication range 
and then compute its distance from neighboring 
UAVs to determine its best motion action [45, 110].

3.4.2  Swarm Intelligence

Swarm intelligence algorithms have been applied 
to optimization, clustering, routing, scheduling/
load balancing, and collision avoidance problems.  
Similar to evolutionary algorithms, swarm 
intelligence algorithms have successfully been 
applied in numerous optimizations, behaviors, and 
path-planning problems.

One form of swarm intelligence is Particle Swarm 
Optimization (PSO), which, as a computational 
optimization method, has been used for 
optimization, path planning, and parameter tuning 
of conventional controller schemes.  Although the 
algorithm is known to have a good convergence 
property to the optimal solution, the fast 
convergence may lead to premature convergence 
to a local optimum [111].

Ant Colony Optimization (ACO) is a probabilistic 
algorithm that models an ant’s travel path selection 
based on the concentration of ants’ pheromone 
deposition (feedback mechanism), which leads to 
short paths between the colony and food sources.  
ACO performance depends on the selection of 
search parameters.  Dan et al. [112] proposed a 
method for optimal selection of parameters for 
ACO.  Suitable for discrete optimization problems, 
the algorithm is characterized by strong robustness 
and a parallel computational mechanism [113], 
even against a noisy sample space (Gaussian 
Distribution) [114].

In Konatowski and Pawlowski [115], ACO was used 
for planning of an UAV flight whose path was 
rerouted to avoid threats.  Like PSO, ACO could 
prematurely converge (suboptimal solutions) in the 
planning process.  Multicolony ACO was suggested 
to find the optimal solution by a cooperative 
exchange of information in the search among 
multiple ant colonies [116].

In swarm robotics, Multiobjective ACO (MOACO) 
algorithms have showed promising results in 
constrained multiobjective optimization problems.  
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Chen et al. [117] employed a modified MOACO 
to solve task allocation for heterogenous UAVs 
by considering target, task, and path-planning 
objectives.  Specifically, the task allocation 
of heterogenous UAVs was formulated as a 
constrained multiobjective optimization problem 
with three objectives—task benefit, UAV damage, 
and total range under the physical and operational 
(logical) constraints.  Simulation results showed 
better performance compared to the standard 
MOACO and Multiobjective PSO.

Another swarm intelligence algorithm relevant to 
swarm robotics is the Wolf Pack Algorithm (WPA), 
which was inspired by the intelligent collaborative 
wolf behavior during hunting.  In Wu and Zhang 
[118], a search-attack mission planning for UAVs 
based on the WPA was solved by first computing 
the optimal solution to the multitarget search 
problem in an unknown environment modeled 
after the wolf scouting behavior using the 
cooperative search algorithm.  Then, a distributed 
self-organizing task allocation algorithm was used 
for the swarm cooperative target strike, modeled 
after wolves’ labor division behavior.  The algorithm 
has good robustness and global convergence 
property and is less susceptible to the premature 
convergence problem of some other swarm 
intelligence algorithms that lead to suboptimal 
results [118].  In a performance comparison for 
unconstrained global optimization problems, 
WPA was found to possess superior performance 
in terms of accuracy, convergence speed, stability, 
and robustness when compared against PSO, GA, 
Artificial Bee Colony (ABC), ACO, and the Firefly 
Algorithm (FA), particularly for high-dimensional 
cost functions [119].

Artificial shepherding is another heuristic method 
particularly suited to human-swarm interactions.  
Inspired by shepherd’s sheep-herding behavior, 
shepherding is advantageous for combining rule-
based systems with learning-based algorithms such 
as deep reinforcement learning, which provides 
context-adaptation but suffers from scalability 
issue of the swarm [120].  Instead of training the 

agents in the swarm with the control behavior, 
only the shepherd “agent” is trained to control part 
or all the rule-based swarm agents.  In Nguyen et 
al. [120], the control of the swarm was done by 
inverse reinforcement learning, which allows for 
apprenticeship of the reward function from the 
expert training data that are human-generated 
policies.

An optimization algorithm closely related to the 
ACO with a faster convergence property is the ABC.  
Saied et al. [121] applied ABC for each UAV of the 
fleet to solve the distributed optimization-based 
control and collision avoidance of the UAVs.

The Fruit-Fly algorithm is a recent swarm 
intelligence optimization algorithm that models 
the food search behavior of fruit-fly swarm.  Li 
et al. [122] used FA to solve the path-planning 
problem for UAV in a 3-D environment having 
complex terrain and multiple threat sites.  The 
Fruit-Fly algorithm finds the optimum path that 
minimizes the cost function subject to length, 
threat probability, altitude, turning angle, 
climbing/gliding angle, and terrain constraints.  
This algorithm showed better performance 
compared to GA.  Iscan et al. [123] proposed novel 
improvement of the classical Fruit-Fly algorithm to 
address the local minima convergence (premature 
convergence) by exploring not only the best 
solutions but the worst solutions in the search.  
Unlike other swarm intelligence algorithms, the 
Fruit-Fly algorithm is simple and straightforward to 
implement [122].

Spider-Monkey Optimization (SMO) is a state-
of-the-art swarm intelligence optimization 
algorithm which models the fission-fusion 
social behavior of spider monkeys during food 
foraging.  A study was conducted to compare 
SMO to other swarm intelligence algorithms for 
UAS path-planning problems [124].  Other swarm 
intelligence algorithms compared to SMO were 
ABC, Bat Algorithm, Grey Optimization, Harmony 
Search, FA, DE, Moth Search Algorithm, PSO, Whale 
Optimization Algorithm, and Greedy Crossover 
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Monarch Butterfly Optimization.  The comparative 
study suggested that SMO provides the best path 
planning, has strong robustness, yields the most 
stable paths over multiple runs, and has the fastest 
convergence rates.

Chicken Swarm Optimization (CSO) is a state-of-
the-art intelligent stochastic search algorithm 
inspired by chicken swarm behavior and 
hierarchical structure [125].  Key properties of 
CSO algorithm are good convergence speed 
and accuracy and good global optimization 
performance.  Although the algorithm is 
susceptive to premature convergence, numerous 
modifications have been proposed to achieve 
global search ability.  Liang et al. [126] proposed 
an Improved CSO for robot planning that 
has significant search efficiency and a high 
convergence rate.  The simulation results were 
compared against the CSO and PSO.  CSO has 
also been used for the parameter estimation of 
nonlinear systems [125].

We highlighted select state-of-the-art behavior and 
path-planning algorithms as well as fundamental 
algorithms for single and multiagents systems 
used in state-of-the-art robotics and autonomous 
systems.

3.5  INTELLIGENT STRATEGY

The hallmark capability of intelligent systems is 
reasoning for decision making.  For the past decade, 
AI research focused on building human intelligence 
models mostly using reinforcement learning 
frameworks in complex environments, such as in 
strategy board games.  Board and video games 
are a canonical testbed for AI algorithms and are 
opportune for machine intelligence development 
because they present conditions where the space 
of possible actions or moves to decide between is 
astronomically large, but the rules of the game are 
well-established, and production of large quantities 
of data is possible.  Video games add complexity 
compared to board games by introducing partial 
observation of states (hidden states).  Therefore, 

choosing the optimal bet or strategy given the 
rules and available information is closer to human 
decision making.  This section surveys significant 
applications of intelligent strategy and planning, 
namely in gaming scenarios.

3.5.1.1  Single-Agent Systems

Deepmind’s AlphaGo

AlphaGo is a reinforcement learning based 
algorithm that plays the most complex strategy 
board game, the ancient Chinese game “Go.”  The 
game tree complexity of a 19 x 19 Go board is 
10360 [127] compared to 10123 for the 8 x 8 chess 
board [128].  AlphaGo uses CNNs for perception 
and RL for decision making.  The extensive training 
is divided into the SL from a database of 30 million 
expert moves known as the KGS dataset (maps the 
state to actions) and the self-play training.

The algorithm uses a Monte Carlo tree search 
(MCTS) governed by policy and value networks 
[129].  The MCTS is a heuristic look-ahead search 
method for a class of decision processes, such as 
in game trees.  Instead of brute force expansion of 
the search tree to explore the best action trajectory 
or moves, it randomly selects and explores regions 
by simulated playout or rollout to determine the 
best moves iteratively using the reward operation 
of reinforcement learning.  A balance between 
exploration and exploitation is key to choosing the 
best move from the current state in the search tree.

The significance of AlphaGo resides in the fact that 
it is the first computer program to win against a top 
professional human in the strategy game of Go, 
a feat in the category of high-complexity games, 
highlighting the potential to reach a superhuman 
level of learning with such an algorithm.

Deepmind’s AlphaGo Zero

AlphaGo Zero, a notable departure from its 
predecessor AlphaGo, was modified to use the 
Residual Neural Network to predict both the 
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policy and value functions from a given state.  
Using only the raw board as input and rules, it was 
trained solely by reinforcement learning of self-
play.  Instead of MCTS rollouts, the Residual Neural 
Network is used to evaluate the best move.

The algorithm performs the following three main 
steps executed in parallel [130]:

1.	 In the self-play stage, a training set is created by 
selecting the best player version from 25,000 
self-play games.  At each move, the game state, 
the search probabilities from the MCTs, and the 
winner in the self-play are stored.

2.	 In the second stage, the network is retrained to 
optimize the weights from a minibatch of 2,048 
positions sampled from the last 500,000 games.  
The Policy Loss function is a Cross-Entropy 
loss function between the network’s predicted 
probabilities and the actual probabilities 
calculated from MCTS.  The Value Loss is the 
mean-squared-error between the network’s 
predicted value and the value computed from 
MCTS.

3.	 The third stage evaluates the latest network 
against the current best network.  The 
evaluation selects the network with at least 
55% wins out of the 400 games played 
between the two.  Both agents represented by 
these two networks use MCTS to select their 
moves.

The significance of AlphaGo Zero is that it is 
possible to train an agent from zero capability 
(tabula rasa) to a superhuman level of expertise 
in complex settings using only a predefined set 
of rules.  AlphaGo Zero had thrashed the previous 
version of AlphaGo in an impressive feat of mastery, 
with a score of 100 wins to none.

Deepmind’s AlphaZero

AlphaZero is a generalized iteration of the latest 
AlphaGo Zero to two other strategy board games—
chess and Shogi.  The generalization removes the 
symmetry assumption associated with positions 

in the Go board game and adds the feature of 
the possibility of the match to end in a draw.  This 
iteration allows solutions to alternate turn-based 
games, transactions, or, more generally, scenarios in 
which:

•	 there are a fixed set of rules;

•	 there is a full observable state of agents,  
e.g., positions; and

•	 the primary goal of the opponent agent 
is known to prevent the other agent from 
winning.

Deepmind’s MuZero

MuZero algorithm constitutes a leap forward in 
the capabilities of reinforcement learning.  It does 
not rely on an available environment model, i.e., 
the game rules or game simulator.  MuZero is the 
more generalized version of the iteration series of 
AlphaGo algorithms in that it learns an accurate 
model of an environment’s dynamics, which it uses 
to plan the best possible actions [131].  Instead 
of learning from millions of degrees of freedom 
of interacting environment inputs, it models 
important aspects in the environment.  This is 
important because the knowledge and simplicity of 
rules is not an option to a system dealing with the 
complexity of an actual real-world scenario.

The significance of MuZero for defense lies 
potentially in its application to simulated wargame 
scenarios with complex doctrine inputs and 
randomization.  MuZero’s ability to predict relevant 
quantities that allow for improved planning 
iteratively with no prior knowledge of the rules or 
environment dynamics to reach remarkably high 
performance is a state-of-the-art AI in strategy play 
and intelligent planning.

3.5.1.2  Multiagent Systems

OpenAI Five

OpenAI Five is a computer bot that plays a 
multiplayer battle arena video game called DOTA 2.  
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The underlying algorithm is Multiagent RL that uses 
self-play (180 years’ worth of games against itself ) 
to improve its capability.

In a live one-on-one battle game in 2017, the initial 
version played against a ranked professional player 
of the DOTA 2 and won.  The last of subsequent 
versions was later demonstrated in a series of live 
five-on-five battles online over three days, ending 
with a win rate of 99.9% for the OpenAI.

The significance of OpenAI Five’s performance 
in DOTA 2 demonstrates success in an imperfect 
information, zero-sum game environment that 
combines several attributes, such as competitive 
actions, collaborative actions, and dynamic 
environment characteristics, all of which find 
parallels in real-world conflict.  Contrary to the 
environments in which the single agent systems 
like AlphaGo and its variants operate, the real-
time requirements of fast decision making, intent 
prediction and anticipatory actions, continuous 
action and observation space, long-term play, and 
partially observed information are what make 
OpenAI Five a worthy AI candidate in multiagent 
competitive and collaborative settings.

Deepmind’s AlphaStar

AlphaStar is a computer bot based on the 
Multiagent RL algorithm that plays the real-time 
strategy video game StarCraft II.  This video game 
environment is one in which perfect information for 
planning is not available and fast decision making 
is required, as time-dependent events may change 
the current best strategy of a given time.

AlphaStar is trained initially from thousands of 
human replays (supervised learning).  Using policy-
gradient-based RL, the parameters are trained so 
the win rate is maximized.  Self-imitation (UPGO) 
is used to deal with off-policy updates [132].  
AlphaStar incorporates multiple feature extraction 
stages.  Minimap features are extracted with an 
RNN.  Time sequence of observations is processed 
by an LSTM.  Scatter connections are used to 
incorporate spatial and nonspatial information. 

The vast combinatorial action space is addressed 
using an autoregressive policy structure and a 
recurrent point network.

Similar to OpenAI Five, the significance of AlphaStar 
is the resultant strategy the bot employed over 
the course of the competition, which displayed 
several remarkable abilities from the experts’ point 
of view based on their analysis and interpretations 
of the games.  Among the observations are the 
initial aggressive and confrontational play due to 
prioritizing short-term rewards over long-term 
ones, the unconventional wisdom instigating a 
suboptimal play of the opponent, and opponent 
intent or vision prediction [132, 133].

3.6  OPPONENT MODELING AND WARGAMES

Opponent modeling is the prediction of the 
behavior or strategy of one or more agents having 
full or partial states in an adversarial game by using 
prior knowledge and observations.  Opponent 
modeling is used to predict rationality-based 
actions of an unknown opponent and is therefore 
very important for defense-related wargaming 
modeling and simulation.  Opponent modeling 
addresses the explicit interpretability of an 
opponent to model the opponent’s behavior.  
This contrasts with systems like AlphaGo and its 
variants, where the internal representation of 
opponent strategies is inferred indirectly.

Opponent modeling is categorized by three 
approaches—strategy classification, goal-based 
generative models, and policy approximation [134]:

1.	 Strategy classifications aim to predict the 
strategy from learned experts via supervised or 
game-theoretic methods.

2.	 In goal-based generative models, how one or 
more agents achieve a goal is the basis for the 
behavior classification.

3.	 Policy approximation learns the function 
mapping from states/action set, which 
estimates the true policy behind the 
opponent’s behavior.
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While strategy classification methods are abundant 
in the recent literature and favored over goal-based 
generative model methods, they both suffer from 
several common drawbacks, such as the following:

•	 Reliance on the process of translating expert-
designed semantic labels to action distribution 
over future game states.

•	 Potential disagreement between labeled 
opponent models and the actual opponent’s 
internal representation affecting the 
performance of discriminative opponent 
models.

•	 Reliance of the discriminative models on expert 
knowledge.

•	 Scarcity of knowledge about the opponent 
affecting the performance of the models.

In contrast to discriminative and generative 
modeling, policy approximation provides the 
distinct advantage that it produces the probability 
of future game states.  Policy approximation will be 
the focus herein concerning opponent modeling.

The policy approach can be approximated using 
NNs (represented as decision trees) or state-
action tables.  Expert domain knowledge can still 
be incorporated into the policy approximation 
framework in the form of state/action sets.

Tang et al. [135] presented a novel AI algorithm for 
a two-player fighting game based on opponent 
modeling combined with evolutionary strategy 
to determine the best response against the 
opponent.  The evolutionary strategy used an 
Enhanced Rolling Horizon Evolution Algorithm 
(E-RHEA).  The opponent modeling was performed 
via three variants—on-line supervised learning 
with cross-entropy loss function, policy-gradient 
reinforcement learning, and Q-learning-based 
reinforcement learning.  The variant algorithms 
were investigated and showed significant 
improvement to RHEA-based strategy-only play.  
It is suggested that RHEA with opponent model 
outperformed state-of-the-art MCTS-based 

fight bots.  The E-RHEA based on policy-gradient 
reinforcement learning won first place at the 2019 
Fighting Game AI Competition and 2020 IEEE 
Conference on Games.

Synnaeve et al. [136] combined CNN and RNN 
to conduct opponent modeling by exploiting 
spatio-sequential correlations in large training data 
from the StarCraft (Brood War) games.  Real-time 
strategy was computed from the encoder-decoder 
RNN architecture to provide state estimation and 
future state predictions from only previous and 
partial observations of the game dynamics.  The 
encoder used a concatenated input of learned 
embedding of both players’ action and state 
features.  Two encoders were examined—ConvNet 
and Convolutional LSTM.  The embedding from 
the encoders passed through recurrent LSTM cells, 
which allowed the capture of information from 
previous frames.  Analysis of off-line testing showed 
that the encoder-decoder, LSTM-based architecture 
performed better at predicting current and future 
states than rule-based baselines.

Similarly, Chen et al. [137] proposed a novel 
Bayesian Policy Reuse (BPR) approach for 
nonstationary opponents in Markov games.  
The algorithm formed a policy library in an 
off-line learning phase.  Unlike the MinMax-Q-
based algorithms that selected conservative 
actions, the selected actions of the suggested 
algorithm considered the opponent behavior 
model.  Opponent modeling was done via the NN 
approximator, which updated opponent models 
with sampled observation.  The network was 
trained with the opponent behavior state and 
observation tuples to provide the probabilities of 
the candidate actions as output.  A belief function 
was used to measure the similarity between each 
approximated opponent policy.  The algorithm 
combined BPR and opponent models to help the 
agents reuse the best response policy.  The novel 
algorithm was tested in a soccer domain with two 
agents and showed better performance compared 
to existing approaches.
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In nonstationary scenarios, such as in zero-sum 
Markov games where the opponent strategy 
changes concurrently, Chen et al. [138] proposed 
an opponent modeling stage and action heuristics 
integrated with an eXtended Classifier System 
(XCS) to enhance the action selection and policy 
learning.  The opponent model was constructed 
to capture the game interactions and propagate 
the predicted opponent behavior for action 
selection and classifier evolution.  To speed up 
the learning process, an accuracy-based eligibility 
trace mechanism was employed via reinforcing 
the XCS matching of historical traces according 
to their accuracy.  By considering the accuracy of 
each classifier in the action heuristic function, the 
algorithm avoided the associated limitations with 
assuming that the opponent followed optimal 
strategy, such as in MinMax based Q-learning 
algorithms.  The simulated Markov games 
demonstrated efficient and reasonable use of the 
heuristic policies for single-agent heuristics.  For 
multiheuristic, multiagent games subject to Pareto 
optimal action selection strategy, the proposed 
algorithm required more time to update the 
classifiers.

Besides concurrent opponent strategy changes, 
nonstationary scenarios can also manifest in 
deceptive measures by deliberate, inconsistent 
dynamics, conveying false cues or concealing 
true information.  An important contribution 
in a competitive nonstationary, multirobot 
environment, Chen and Arkin [139] proposed a 
novel countermisdirection approach for behavior-
based, multirobot teams.  They introduced a 
countermisdirection agent (CMA) to detect the 
misdirection process and act collaboratively to 
stop it.

The robots’ groups in the scenario were the Mark 
group, misdirection team, and countermisdirection 
team.  The mark group is the subject of misdirection 
and modeled on each of the mark agents in the 
group using the Granovetter threshold model.  This 
model captures the behavior of the flock of animals 

that can be misled or stopped.  The misdirection 
team seeks to misdirect the mark group.  The 
misdirection team is characterized by the leader of 
the group, who triggers the misdirection process 
by initiating action from the Wander Behavior 
model; the rest of the group follows to form a group 
behavior that misdirects the mark group.  The CMA 
group has no prior knowledge of the misdirecting 
team’s leader goal location.  The CMAs cannot 
identify marks from misdirection team agents.  The 
CMA monitors the movement of the active agents 
based on its threshold and within its observation 
range for a period of time.  They estimate an 
intercept position in front of the marks in motion 
based on the collective movement of the active 
agents.  The CMAs then move to the estimated 
intercept position and form a barrier to prevent the 
marks from reaching the misdirecting team leader 
position.  This algorithm simulated results that 
have potential in the field of mobile robotics with 
military applications.

In the multiagent domain, Zheng et al. [140] 
proposed an Extended Deep Bayesian Policy Reuse 
(Deep BPR+) algorithm to handle nonstationary 
opponents in Markov games.  Opponent policy 
was simultaneously determined using the belief 
model based on rewards signals and opponent 
models.  The Opponent model was obtained 
from a DNN approximator instead of tabular 
representation using past sequence of moves.  It 
was obtained by maximizing the log probability of 
the approximated opponent policy with an added 
regularizing entropy term of the policy to address 
the overfitting issue.  To measure the similarity 
between the opponent’s different policies, 
Kullback-Leibler divergence was used.  To speed 
the online learning process, the Distilled Policy 
Network (DPN) was used to initialize a starting 
policy and combine multiple response policies 
into one, therefore improving response time.  DPN 
offered a generalized way of initializing the starting 
policy, leading to better performance without 
being concerned about the choice of response 
policy.
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He et al. [141] presented an implicit multiagent 
opponent modeling with optionally enabled 
explicit modeling, based on the deep Q-Network 
(DQN), using Mixture-of-Expert architecture.  
The suggested model demonstrated automatic 
learning of different strategy patterns of the 
opponent in a simulated soccer game and popular 
trivia game.

Biro and Walker [142] applied the RL approach to 
play calling in football.  The algorithm finds the 
utilities and optimal policy from value iteration 
and greedy policy computation at each state, 
which provides valuable insights and allows for an 
improved comprehension of the game.

Opponent modeling is an area of active research, 
as there are several challenges that pertain to 
multiagent settings—particularly, how an action 
taken by one agent at a given time jointly changes 
the environment state and the outcome of actions 
taken by other agents.

3.7  COGNITIVE ELECTRONIC WARFARE

The electromagnetic spectrum is an important 
front of warfare; modern and conventional 
weapons rely on electromagnetic, electro-
optical, and acoustic signals for communication, 
intelligence, sensing, and weapon delivery.  The 
emergence of modern AI methods has brought 
about opportunities to reframe traditional 
electronic warfare (EW) problems in statistical 
signal processing and information theory as 
AI problems.  The use of AI in EW, now termed 
cognitive EW (CEW), has been gaining immense 
attention, particularly in areas of automatic 
modulation classification, automatic intrapulse 
modulation classification, and radar pulse 
repetition interval tracking [143, 144].

Typical modern EW systems fall under three fields 
of applications or system component processes 
[140] (see Figure 3-6):

1.	 EM threat interception, recognition, and 
location are provided by an electronic support 
measures (ESM) system.

2.	 Offensive measures provided by an electronic 
countermeasure (ECM) system disturb or deny 
an enemy’s EM operational means.

3.	 Defensive measures provided by an electronic 
counter-countermeasures (ECCM) system 
provide resiliency and protection against the 
enemy’s ECM.

3.7.1  Electronic Support Measures

AI techniques using residual networks from deep-
learning algorithms have been successfully used for 
ESM to perform automatic classification of signals.  
Ammar et al. [143] have shown the ability to classify 
signals of 24 types of modulations.

Liao et al. [145] devised an unsupervised scheme 
for classifying and identifying received radar 
pulse signals using the Ward Clustering method 
and Probabilistic Neural Network (PNN).  The 
scheme used adaptive filtering and spectrum 

Figure 3-6.  EW System Components (Source:  QinetiQ).
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analysis in the data processing stage, followed by 
a preclassification state in which Ward’s clustering 
was employed, the output of which was fed to 
the accurate classification stage.  The latter used 
the preclassified signals for training the PNN.  The 
Calinski-Harabasz index, Gap index, Silhouette 
index, and Davies Bouldin index were used as 
validation criteria for determining the optimal 
number of clusters.  The PNN was further optimized 
by the maximum of the classification validity index.  
To increase the identification accuracy of the PNN 
classifier, the bivariate correlation analysis was 
used.  The scheme showed better classification 
stability and achieved 100% for classification and 
identification.

In automatic intrapulse modulation classification, 
Qu et al. [146] used time-frequency analysis, image 
processing, and CNN to recognize 12 radar signals.  
To extract time-frequency images for CNN, Cohen 
Class Time-Frequency Distribution (CTFD) was used 
with the Gaussian function as a kernel, followed by 
a series of image-processing steps to remove the 
background noise.  The CTFD was advantageous 
over Short Time Fourier Transform in terms of 
adaptability and over Wigner-Ville Distribution 
in terms of high time-frequency resolution and 
removal of cross-terms that appear in nonlinear 
frequency modulations at higher time-frequency 
resolutions.  The recognition stage used LeNet-5 
based CNN with the RELU activation function.  The 
confusion matrix results of the recognition stage 
showed a probability of successful recognition 
of more than 96.1% for 12 different radar signal 
modulations of –6 dB SNR.

Supervised techniques from computer vision for 
visual detection of signals use the spectrogram 
waterfall images to divulge signal features and 
characteristics.  O’Shea et al. [147] demonstrated 
signal detection and localization using a variation 
of YOLO’s (Tiny-Yolo) region-based CNN that was 
trained on a 20k event containing spectrograms.

Lee et al. [148] compared forward DNN and LSTM 
structures for predicting radar-jamming signals.  
They showed that forward DNN required the 
extraction of features from pulse description word 
list of radar signals prior to training, while LSTM 
structures directly used the list for training and 
prediction.  The LSTM showed greater prediction 
accuracy on average than the forward DNN 
structure, with the caveat that the training took 
longer for LSTM.  It was suggested that forward 
DNN and LSTM could be used effectively to predict 
unknown radar signals with an average accuracy of 
92% or higher.

A recent example of cognitive EW systems 
in development is BAE system’s Controllable 
Hardware Integration for Machine-learning 
Enabled Real-time Adaptivity (CHIMERA).  BAE is 
developing a reconfigurable AI-powered hardware 
platform that enables advanced deciphering and 
detection capabilities against electronic assaults.  
The CHIMERA is expected to adapt its radio 
frequency (RF) configuration and signal features in 
real-time [149].

3.7.2  ECMs

Qiang et al. [150] proposed a jamming-style 
selection algorithm based on support vector 
machines using a jamming-rule base.  The 
jamming-rule base is constructed from the 
features of airborne multifunctional radars with 
cognitive capabilities in air-air combat.  The 
feature space used is Pulse Repetition Frequency, 
Carrier Frequency, Pulse Width, Coefficient of 
Resemblance, and Box Dimension.  The proposed 
method does not depend on the radar state 
estimation and is advantageous in terms of fast 
convergence and real-time requirement compared 
to online learning methods like Q-learning.

One of the techniques used in ECM is the deceptive 
transmission of pulses at the pulse interval of 
enemy radar signal.  The pulse tracking of a pulse 
repetition interval (PRI) requires the continuous 



3-26

State-of-the-A
rt Report: SEC

TIO
N

 3

Defense Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release:  distribution unlimited.

prediction of time of arrival of pulse trains.  In 
ESM, PRI tracking extracts specific pulses from 
interleaved pulses.  In ECCM, a PRI predictor is used 
to discern signal pattern and counter decoy sources 
[143].

Autoregressive RNN like LSTM have been used 
recently in generating a radar pulses stream that 
belongs to the same pulse probability distribution 
of the received pulse stream.  The ability to 
generate similar pulses may be applied to the 
interpulse extrapolation for tracking as part of 
system functionality in ESM.  This may also be 
applied in ECM, where LSTM could be also used 
for saturating the spectrum with fake returns to 
raise enemy’s radar probability of false alarm by 
synthesizing train of pulse sequences in time [143].

Mission-critical applications require fast adaptation 
to cognitive jammers and dynamic environments. 
Amuru et al. [151] proposed a Multiarmed Bandit-
Based learning algorithm that optimally jams 
malicious transmitter-receiver pairs without an 
a priori knowledge about its strategy or channel 
gains.  The algorithm was tested against static 
and adaptive strategies and showed the capacity 
to track different strategies used by adaptive 
transmitter-receiver pairs.

The U.S. Air Force plans to take intelligence warfare 
to the electronic spectrum via its Kaiju project.  
The project seeks to create an EW ecosystem to 
demonstrate next generation of systems capable 
of autonomous electronic attacks and enemy air 
defenses countermeasures.

3.7.3  ECCMs

In ECCM, cognitive radio (CR) is an automatic 
spectrum allocation system that locates 
appropriate channels in the spectrum based on the 
perceived conditions in the environment, such as 
spectrum interferences and jamming.  Cognitive 
radars employing CRs have a high countermeasure 
performance against interferences and jamming 
[143].  The adaptability of CR to changes in the 

environment presents challenges to the EW 
system to intercept, track, and jam its signals.  A 
countermeasure is the use of an RL-based adaptive 
system.

Yangyang et al. [152] developed an intelligent 
jamming method based on RL and analyzed 
the performance of a DRL-based, antijamming 
algorithm as a measure against the intelligent 
jammer in various communication and jamming 
modes.  Simulation results suggested that the 
RL-based jammer could effectively restrict the 
performance of the DRL-based, antijamming 
method.

Kang and Bo [153] proposed a DQN method for the 
frequency-hopping strategy of a cognitive radar 
without knowledge of a jamming model.  This 
reinforcement-learning-based method allows the 
cognitive radar to learn the jammer’s strategies 
based on the changes it perceives and then adopts 
an optimal strategy of avoiding jamming signals.
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SYSTEMS AND 
PROGRAMS 

APPLYING AI FOR 
WEAPONS SYSTEMS

SECTION

04
In this section, we briefly cover examples of the 
various ongoing systems and programs relating to 
AI for weapons systems.  We mainly focus on U.S.-
based systems and programs but conclude with 
two subsections in Section 6 highlighting related 
developments by Russia and China.

The U.S. government has established a few 
important institutions specifically focused on AI.  
Within the DoD is the Joint Artificial Intelligence 
Center (JAIC) and the Under Secretary of Defense 
for Research and Engineering (USD[R&E]) 
community of interest (CoI) on autonomy.

The JAIC was established by the DoD in 2018 to 
expand and transform U.S. military capabilities 
and services by leveraging AI technology.  It aims 
to accelerate the adoption of AI as well as lead 
the national effort to maintain the U.S. military 
technological edge and as a global force in the 
next-generation technologies related to AI.  
According to a memo released in December 2021, 
the JAIC will be merged under the Chief Digital and 
Artificial Intelligence Officer together with the Chief 
Data Officer and Defense Digital Service [4].

The USD[R&E] stood up the CoIs, one of which 
focuses on autonomy.  The CoI’s are designed 
to encourage multiagency coordination and 
collaboration in cross-cutting technology focus 
areas with broad multiple-component investment.  
CoIs provide a forum for coordinating scientific 
and technology strategies across the Department, 
sharing new ideas, technical directions, and 
technology opportunities; jointly planning 

programs; measuring technical progress; and 
reporting on the general state of health for specific 
technology areas.  The autonomy CoI has four 
subgroups focused on the following:

1.	 Human/Autonomous System Interaction 
and Collaboration:  The keys to maximizing 
the human-agent interaction are instilling 
confidence and trust among the team 
members; understanding each member’s tasks, 
intentions, capabilities, and progress; and 
ensuring effective and timely communication.  
All must be provided within a flexible 
architecture for autonomy, facilitating different 
levels of authority, control, and collaboration.

2.	 Machine Perception, Reasoning, and Intelligence: 
Perception, reasoning, and intelligence 
allows for entities to have existence, intent, 
relationships, and understanding in the 
battlespace relative to a mission.

3.	 Scalable Teaming of Autonomous Systems:  
Collaborative teaming is a fundamental 
paradigm shift for future autonomous 
systems.  Such teams are envisioned to be 
heterogeneous in size, mobility, power, and 
capability.

4.	 Test, Evaluation, Validation, and Verification:  
The creation of developmental and operational 
T&E techniques that focus on the unique 
challenges of autonomy, including state-space 
explosion, unpredictable environments, 
emergent behavior, and human-machine 
communication.



4-2

State-of-the-A
rt Report: SEC

TIO
N

 4

Defense Systems Information Analysis Center
DISTRIBUTION STATEMENT A. Approved for public release:  distribution unlimited.

On the U.S. federal level and outside the DoD are 
important AI-related groups, such as the National 
Artificial Intelligence Advisory Committee (NAIAC), 
the National Security Commission on Artificial 
Intelligence (NSCAI), and the National Artificial 
Intelligence Research Institutes.

The NAIAC is tasked with provisioning critical 
information, recommendations, and reports to 
the President and AI Initiative Office on topics 
related to the national AI initiative.  The NSCAI was 
established in 2018 as an independent commission 
by Congress to issue reports to the President 
and Congress on the advancement of AI, related 
ML developments, and associated technologies.  
The commission reviews U.S. AI’s technology 
advances and competitiveness related to national 
security, defense, and investments and makes 
recommendations in developments, education, 
ethics, standards, and technology management in 
relation to AI.

National Artificial Intelligence Research Institutes 
is a program born out of National Artificial 
Intelligence Research and Development Strategic 
Plan whose purpose is to enable long-term research 
and U.S. leadership in AI through the creation of 
joint government and industry-funded AI research 
institutes.  This program is a joint government 
effort between the National Science Foundation, 
U.S. Department of Agriculture’s National Institute 
of Food and Agriculture, U.S. Department of 
Education’s Institute of Education Sciences, U.S. 
Department of Homeland Security’ Science & 
Technology Directorate, NIST, DoD’s Office of 
the Under Secretary of Defense for Research and 
Engineering, and IBM Corporation.

In the next sections, we focus on specific programs 
and systems in development at the intersection of 
AI, autonomous systems, and weapons systems.  
Our survey of related programs and systems is far 
from comprehensive but is more of an overview 
of those AI-enabled systems (or related programs) 
that have battlefield applicability to weapons 
systems.  We have grouped these systems by their 
domain (aerial, maritime, and land), collated those 

AI-systems designed for swarming purposes, and 
listed AI-enabled tools for battle management, 
navigation, and targeting.

4.1  AERIAL SYSTEMS

4.1.1  Next-Generation Air Dominance (NGAD) 
Programs

The U.S. Air Force’s development of sixth-
generation fighters is currently being developed 
under the NGAD program.  One key element of 
these fighters is the integration of the “AI wingman,” 
the AI-enabled autonomous functions and 
manned-unmanned teaming (MUM-T) capabilities.

4.1.2  Shield AI Hivemind (Heron Systems)

Heron Systems’ AI is the victor of the DARPA’s 
AlphaDogfight competition.  Its impressive show of 
intelligent maneuverability, combat dynamics, and 
intent prediction resulted in a win against multiple, 
highly capable AIs in the competition and against 
a U.S. Air Force F-16 fighter pilot in a simulated 
dogfight.  The remarkable win echoed throughout 
the DoD, U.S. Armed Forces, defense, intelligence, 
and academic communities.  According to Heron 
systems’ Brett Darcey, the dominant performance 
of Heron Systems’ Falco agent (AI) will be further 
set apart by its potential use of a Shield AI (AI and 
robotics company) platform capable of operating 
in GPS and communication-denied environments 
[154].  The system is being integrated and planned 
to be scaled, operationalized, and fielded into 
existing unmanned platforms and in NGAD’s 
unmanned combat aerial systems (UCASs).

4.1.3  Shield AI V-Bat

The V-Bat is a versatile vertical takeoff landing, 
fixed-wing autonomous vehicle (Figure 4-1).  
The V-Bat can carry out a wide range of mission 
operations, such as infantry clearance, air-defense 
breach, and swarm operations, thanks to its 
integrated Shield AI’s Hivemind autonomy core 
[155].  The Hivemind autonomy core negates the 
need for human operator, GPS, and RF links.
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4.1.4  Kratos XQ-58 Valkyrie

The U.S. Air Force’s Skyborg program provides rapid 
prototyping via an AI-enabled, open-autonomy 
architecture that emphasizes continued scalability, 
modularity, commonality, and portability.  It 
also seeks to develop low-cost attritable aircraft 
technology-based UCAS (Figure 4-2).  As one of 
the U.S. Air Force’s Vanguard programs, Skyborg 
will fast-track the capabilities toward MUM-T and 
resilient autonomy, thereby improving survivability 
and lethality against near-peer adversaries [156].

The U.S. Air Force has conducted several flight 
tests of Skyborg AI aboard Kratos’ XQ-58 Valkyrie 
to demonstrate the Skyborg open and modular 
autonomy architecture.  At the latest test on March 
2021, the demonstrator released the Altius-600 UAS 
payload [157].

4.1.5  MQ-20 Avenger UCAS

The Skyborg team demonstrated the portability 
and scalability of the Skyborg autonomy AI on a 
different platform, the MQ-20 Avenger UCAS [158].  
The modularity of the Skyborg autonomy AI core 
allows for autonomous capability increments and 
more advanced AI integration.

4.1.6  Autonomous Loitering Munitions

Autonomous loitering munitions are a category 
of aerial weapons.  They are launched, and then 
the munition weapons system waits until its 
required use to strike.  These are often lightweight, 
multidomain capable, and ground launched.  
Recent work has been done to add the capability 
for these weapons systems to be fully autonomous.  
Examples of integrating autonomy into loitering 
munitions include IAI’s Harpy, KARGU, ASN-301, 
and Orbiter 1K.  Each have a “fire and forget” feature 
where they can be launched and then acquire and 
prosecute targets without further supervision.

4.1.7  Dynetics X-61 Gremlins

X-61 Gremlins is a technology demonstration 
platform originating from DARPA’s Gremlins 
program designed to provide a semiautonomous, 
mid-air recoverable, and low-cost UCAS (Figure 
4-3).  The X-61 can carry a variety of payloads, 
including EO/IR imaging, EW sensors, and weapons.

4.2  MARITIME SYSTEMS

The U.S. Navy is applying AI technologies to several 
ongoing autonomous platform development 
programs.  Concordant to the DoD directive 
guidelines, AI technology is employed through 

Figure 4-1.  V-Bat UAV in Transition Flight From Vertical Takeoff 
(Source:  Shield AI Used With Permission, https://shield.ai/products).

Figure 4-2.  U.S. Air Force’s Skyborg Conceptual Design (Source:  AFRL, 
https://www.af.mil/News/Article-Display/Article/1796930/skyborg-
program-seeks-industry-input-for-artificial-intelligence-initiative/).
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the Navy’s Unmanned Maritime Autonomy 
Architecture and Common Control System.

The Sea Hunter is an unmanned Navy platform 
operated to develop TTPs.  It serves as one of the 
Navy’s test platforms for autonomy development.  
Its autonomy is so sufficiently developed that 
it navigated from San Diego to Pearl Harbor.  A 
second Sea Hunter, called Seahawk, was launched 
in August 2020 (Figure 4-4).

4.3  LAND SYSTEMS

4.3.1  QinetiQ/Pratt Miller’s Expeditionary 
Autonomous Modular Vehicle (EMAV)

Jointly developed with QinetiQ North America 
(QNA), EMAV is a large robotic combat vehicle 

(RCV-L) (Figure 4-5) designed to meet the U.S. Army 
RCV program’s specific requirements for the RCV 
decisive lethality continuum concept.  The EMAV 
houses QNA’s modular ground autonomy core 
open architecture.  The system is being verified 
for its support capabilities in a MUM-T operational 
environment.

4.3.2  Textron Systems’ Ripsaw M5

The Ripsaw M5 is a fifth-generation medium RCV 
(RCV-M).  The electric tank, a U.S. Army technology 
demonstrator with fully autonomous capabilities, 
is part of its three-tier RCV decisive lethality 
continuum concept (Figure 4-6).

4.3.3  Rheinmetall’s Lynx KF41

The Lynx KF41 is an optionally piloted infantry 
fighting vehicle under development that integrates 
a large suite of Raytheon’s sensors and AI-enabled 
autonomous capability.  The infantry fighting 
vehicle will be equipped with a virtual crew AI 
that provides continued scanning and detection 
of battlefield landscape for increased situational 
awareness and automatic target recognition (ATR) 
to alert the crew for a swift tactical course of action.

4.4  SWARM SYSTEMS

Swarm systems are fully (operator is still on the 
loop) or partially autonomous systems capable of 
coordinating autonomously to execute swarm-

Figure 4-3.  Dynetics X-61 Gremlins UCAS (Source:  DARPA, 
https://www.darpa.mil/news-events/2020-01-17).

Figure 4-4.  U.S. Navy’s Sea Hunter in Its First Demonstration 
(Source:  U.S. Navy, https://www.navy.mil/Portals/1/Strategic/ 
20210315%20Unmanned%20Campaign_Final_LowRes. 
pdf?ver=LtCZ-BPIWki6vCBTdgtDMA%3D%3D).

Figure 4-5.  QinetiQ/Pratt Miller’s RCV-L (Source:  QinetiQ [159]).
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based missions (e.g., flocking, rendezvous, and 
“play calling”).  These are systems that operate 
together to achieve a unified end.  The DoD is 
actively pursuing the development of such systems.

4.4.1  DARPA’s Offensive Swarm-Enabled Tactics 
(OFFSET)

DARPA’s OFFSET is a program enabler of the next-
generation ecosystem of combat technologies that 
seeks to produce a diverse set of swarm mission-
capable unmanned autonomous vehicles.  The 
program envisions using human-swarm teaming 
of upwards of 250 unmanned aerial and ground 
systems.

4.4.2  Collaborative Small-Diameter Bomb 
Swarm (CSDB)

CSDB is a swarm technology based on autonomous 
weapons munitions in development under the 
Golden Horde program, which falls under the 
umbrella of the U.S. Air Force’s Vanguard program 
whose objective is to expedite the advancement 

of warfare proven and effective AI technologies.  
The first phase of the Golden Horde program 
culminated in the development and demonstration 
of a swarm of CSDBs operating collaboratively to 
engage a target [160].  The subsequent phases 
build upon the demonstration in a digital weapons 
ecosystem, where the virtual enhancements 
are carried and evaluated in a virtual simulation 
environment dubbed “Golden Horse Colosseum.”

The swarm technology of the CSDB seeks to 
provide autonomous identification, target 
selection, and strike capabilities.  The autonomous 
behavior of CSDBs modeled after the collaborative 
autonomy of play calling in which the collaborative 
play is chosen from a preestablished set of plays.  
The decentralized control means that if one or more 
group members are lost, the mission can be still 
completed since each group’s members runs the 
autonomy core [161].

4.4.3  Perdix Swarm

Perdix is a technology demonstrator of an 
autonomous multiagent weapons system of 
microdrones with decentralized control that 
operate swarm reconnaissance and other tactical 
missions.  The decentralized control, dubbed “hive-
mind,” is a self-adaptive and expandable system 
with no centralized or human control.  Perdix 
technology shows itself to serve as an anti-air-
defense weapon.  Each microdrone in the swarm 
carries a transmitter for jamming seen by enemy 
air defenses as a decoy that, in large numbers, 
overwhelms the radar systems of the enemy air 
defenses [162].

4.4.4  Mako UTAP22

Developed by Kratos Unmanned Systems Division, 
the Mako UTAP22 platform is being developed to 
specifically operate in tactical MUM-T and carry out 
swarm operations.  The UCAS embeds the U.S. Air 
Force Skyborg’s autonomy core and can coordinate 
commands for attack and maneuvering from 
ground-based and air-based command and control.  

Figure 4-6.  Army’s Ripsaw M5 Unmanned Battle Vehicle 
(Source:  U.S. Army Photo Courtesy of Textron Systems, https://asc.army.
mil/web/news-rapid-robotic-requirement-relay/).
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The UCAS’s payloads include internal and external 
weapons payloads and advanced EW and sensor 
wingtip pods [163].

4.4.5  Coyote UAS Block 3

Coyote is a tube-launched, small autonomous, 
expandable, and multimission UAS adaptable for 
diverse individual or swarm missions, including 
EW, surveillance, and strike [164].  Developed 
by Raytheon Missile & Defense, the UAS can be 
launched from the ground, air, and sea.  The U.S. 
Army has already successfully tested Coyote UAS 
Block 3 against a UAS swarm, but due to the urgent 
need for more performant counter-UAS solutions, 
variants of the Coyote are being further enhanced 
to fly faster and farther.  The U.S. Navy seeks to field 
its own version launched from unmanned surface 
vehicles (USVs) and UUVs.

4.4.6  Control Architecture for Robotic Agent 
Command and Sensing (CARACaS) Swarm

CARACaS is an autonomy core framework for 
multiagent coordination and control that has 
been used by the Navy to create “swarmboats” 
(Figure 4-7).  The CARACaS system provides 
fully distributed, multiagent operations.  The 
cooperative behavior models supported by the 
autonomy core are patrol, track, inspect, and trail.  
The system is planned for heterogenous platform 
teaming and adaptable to attrition and subsystem 
failures [165, 166].

4.4.7  Riptide Swarm Micro-UUVs

The Riptide family of UUVs is a series of highly 
flexible robotic underwater platforms capable 
of long-range, high-endurance, and high-speed 
critical missions at a great depth.  Draper Labs, in 
collaboration with Riptide Autonomous Solutions 
and Teledyne Benthos, is developing a swarm 
system of micro-UUVs for the Navy [167] (Figure 
4-8).  Thanks to the integrated maritime open 
architecture autonomy that Draper developed 
for the U.S. government’s open architecture for 
mission autonomy, the swarm agent can carry 
out autonomous sorties, maintain underwater 
communications, surface for periodic GPS updates, 
and exchange acoustic target intelligence data to 
engage surface targets.

4.5  BATTLE MANAGEMENT AND INTELLIGENT 
COMMAND & CONTROL

The DoD continues its efforts in broadening 
the capabilities of the U.S. Armed Forces via the 
exploration of effective symbiotic human and 
machine operations through MUM-T, a mission 
autonomy paradigm viewed as a leap departure 
from the conventional warfare operations.  This 
paradigm synergizes human intuition and 
oversight, the effectiveness of autonomous systems 
with adaptation, resilience, and on-demand 
decision-guiding abilities of AI to deliver highly 
accurate mission execution, operational flexibility, 
and increased lethality and survivability.  MUM-T 

Figure 4-7.  Swarm II USVs With CARACaS During Demonstrations (Source:  NASA [165]).
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constitutes a shift toward the beginning of an era of 
human-machine cooperation.

To meet the data-intensive and network-processing 
requirements of the next-generation battlefield, 
the DoD is ramping up development of a plurality 
of systems supporting the Joint All Domain 
Command and Control with AI-enabled mission 
planning and combat management capabilities.

Raytheon is developing a battlefield decision 
support tool dubbed “ARAKNID” (Anytime 
Reasoning and Analysis for Kill-Web Negotiation 
and Instantiation across Domains) as part of the 
DARPA Adapting Cross-Domain Kill-Webs program.  
It was recently used in a multinational exercise 
led by U.S. Northern Command called Global 
Information Dominance Experiment 3, or GIDE 3, 
where ARAKNID took in a variety of information 
and then recommended operationally relevant 
courses of action to human decision makers.

BAE continues to develop a semiautonomous 
mission-planning tool under the names of Multi-
domain Adaptive Request Service (MARS) and, 
more recently, the Adapting Cross-Domain Kill-
Web (ACK) program.  MARS was a Phase 1 effort 
completed in partnership with Carnegie Mellon 
University and Uncharted Software.  Together they 
developed the MARS software, which allows quick 
mission plan updates given new target information.  
ACK is the continuation of this work under a Phase 2 
effort with DARPA, with the goal of demonstrating 
this technology in a multidomain, operationally 
relevant environment.

The U.S. Army’s Constructive Machine-learning 
Battle with Adversary Tactics (COMBAT) program 
seeks to use AI to develop advanced adversarial 
war game tactics to stimulate U.S. Forces 
countermeasures and retaliatory tactics in a way 
that will ensure long-term tactical advantage of 
the U.S. Forces and enforce unforeseen battlefield 
reality for the enemy.

DARPA’s Explainable AI program will aid human, 
battle management decision makers by ensuring 
that the AI can produce explainable models and 
reasoning and present the rationale in ways that 
a human can understand.  This process will use 
neurosymbolic AI and state-of-the-art human-
computer interface techniques.

4.6  ISR & TARGETING SYSTEMS

4.6.1  SRC’s HPEC Pod

The High-Performance Embedded Computing 
(HPEC) pod is an AI-enhanced ISR payload 
designated for the Agile Condor (MQ-9 Reaper 
variant, Figure 4-9) addressing the requirement for 
processing, exploitation, and dissemination (PED) 
of data for the next-generation, semiautonomous 
unmanned combat aerial vehicles (UCAVs).  The 
HPEC pod hosts a modular AI suite capable of 
near real-time autonomous processing of target 
acquisition, enhanced situational awareness, and 
dissemination of valuable combat information.  

Figure 4-8.  Riptide Autonomous Solutions Micro-UUVs 
(Source:  Navy, https://www.navsea.navy.mil/ortals/103/Documents/ 
NUWC_Newport/ANTXdocs/ANTX_Playbill_LR_15AUG.pdf?ver= 
2018-08-22-105459-353).
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SRC Inc.’s AI suite boasts adaptive decision making 
and provides multimode mission continuity in 
communications-denied environments.

4.6.2  Nemesis

While augmented reality provides the information 
advantage and enhances the perception of the 
Warfighter during combat, HRL Labs’ NEuroMorphic 

EyeS In the Sky (NEMESIS) adds the tactical 
dimension of automated, critical decision making.  
NEMESIS is a bioinspired visual AI system (Figure 
4-10) that seeks to emulate the human vision 
and cognition by fusing a multimodal sensor, 
recognizing scenes and situations, interpreting 
context, and proving fast, intelligent decision and 
tactics in real-time to the combatant.  In a series 
of two demonstrations, NEMESIS first tested its 
activity recognition and situational awareness 
capabilities.  In the second test, mission analytics 
were demonstrated, such as mission phases, 
incorrect actions, and mission anomalies [168].

The Maven Project, initiated by Office of the 
Secretary of Defense, seeks to catalyze the next 
generation AI/ML technologies that will automate 
PED for tactical UAS and Mid-Altitude and High-
Altitude ISR platforms by exploiting the large 
volume of field data and Full Motion Video (FVM) 
and generating actionable intelligence at a faster 
pace.  The initiative is to develop algorithms for 
ATR using deep learning and computer vision 
for detection/identification/tracking and AI for 

Figure 4-10.  HRL’s Nemesis Eye Interprets the Battlefield for Actionable Intelligence (Source:  Getty Images, https://www.gettyimages.ca/detail/
photo/new-technologies-to-be-used-in-specialized-military-royalty-free-image/1010598692).

Figure 4-9.  MQ-9 Reaper in Flight (Source:  Photo by Airman 1st Class 
William Rosado, https://www.dvidshub.net/image/5625956/mq-9-
reaper-flight).
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ascertaining the proper course of actions for further 
stages of decision making.

4.7  NAVIGATION

Conventional weapons systems rely on a GPS 
signal locked inertial navigation system solution 
to get accurate real-time position, navigation, and 
timing (PNT) information.  However, in austere 
and electronically hostile environments where 
communication signals might be subjected to 
jamming and spoofing, mission execution might 
be disrupted due to a loss of positional and timing 
accuracy in the navigation systems.  AI-driven 
technologies are being developed and tested to 
maintain navigation in such environments.

Northrop Grumman is developing new PNT 
technology using AI and ML algorithms to detect 
and identify GPS threats in low-power RF signals 
near the noise floor that will affect navigation 
by searching large RF spectrum data for threat 
characteristics and anomalies.  The algorithm of 
the GPS threat detector automatically updates its 
own list of reference threats and communicates 
the threat information to other combat systems 
or operators within the network.  The detection 
allows for the mitigation of GPS degradation by 
reconfiguring its operation [169].

In addition to the invisible electronic threats, the 
potential use of long-range missiles to target 
satellite constellations has become a reality since 
2007, when China successfully shot down an 
orbiting satellite [170].  In view of such threats, the 
government contracted with KBR, Inc., to research 
and prototype an alternative PNT navigation 
system for use in GPS-denied environments.  The 
Stealth and Cognitive Agile Navigation System 
project will produce a cognitive PNT navigation 
system that will provide continuous real-time 
positioning using AI and cognitive dead-reckoning 
models with enhanced environment sensing [171].

Navigation in a deep ocean environment remains 
an unexplored and unexploited area as a warfare 

entry due to the technical challenges associated 
with loss of surface and satellite communications 
when underwater.  Therefore, a growing area of 
research is exploring the use of AI algorithms 
to overcome GPS-deprived navigation as in 
the deep sea.  DARPA’s Angler program aims to 
develop an underwater platform capable of a fully 
autonomous, long-duration mission deprived of 
satellite and surface communication with the help 
of a sensor suite providing perception in dark, 
turbulent, and semiopaque surroundings.
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AI IN FUTURE 
COMBAT

SECTION

05
U.S. defense strategists are betting on AI-enabled 
weapons and sensors to project complexities onto 
the battlefield that will overrun and overwhelm 
adversary systems, defenses, and combat decision 
making [172].  Mosaic warfare is the terminology 
used to capture this strategic vision for future 
combat.  Former director of DARPA’s Strategic 
Technology Office stated that the goal:

“… is to create the interfaces, 
communications links, and the precision 
navigation and timing software – the 
technology backbone – to allow these 
exquisite systems to work together.  On 
PowerPoint illustrations of battlefields, 

these communication links are often 
portrayed with lightning bolts.  One of our 
mottos is to make lightning bolts real.” 
[173].

Mosaic warfare concept is a warfighting strategy 
that employs multidomain, nonuniform, and 
asymmetric force projection that employs a variety 
of weapons platforms of different types, classes, 
configurations, and sizes.  By the mosaic tile 
analogy, the concept foresees all the constituents 
coming together to create an unconventional 
strike force that disrupts and destabilizes the 
enemy (Figure 5-1).  The concept is characterized 
by its dynamic interoperability, scalability, and 

Figure 5-1.  The Army’s “Robotic and Autonomous Systems Strategy” Foresees Soldier/Robot Teaming and Robot/Robot Teaming as Strategic 
Mission Enablers (Source:  U.S. Army).
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integration flexibility, leading to agile integration 
of new weapons technologies and cost-effective 
systems [173].  Use of AI is a key enabler for mosaic 
warfare.

Using AI, the next generation of weapons systems 
will feature great levels of integrated autonomous 
functions and decision making.  Critical 
development areas will target AI for greater levels 
of cross-domain information fusion, intelligent 
adaptive topology networks, fast data processing, 
partial information resilient control, decentralized 
control, and accurate predictive capabilities.  
Unmanned weapons will feature advanced vision, 
radar, and sonar algorithms for ATR, multimodal 
sensor fusion for enhanced perception and 
intelligent mission planning.

Combat operation is foreseen to engage mission 
command chain in fast-paced, data-massive 
operations that human commanders will unlikely 
cope with.  Neurosymbolic AI integrated in the 
combat management systems is expected to not 
only unravel the enemy’s combat strategies but 
provide decision support and tactical guidance 
and disseminate corrective measures in human-
understandable form.

Additionally, cross-domain cooperation 
supported by timely, critical, accurate, and distilled 
dissemination of combat-valued information 
constitutes a strategic operational and tactical 
advantage.  Future AI through actionable 
intelligence is poised to provide the capability of 
transforming massive situational and battlefield 
intelligence data (SIGnal INTelligence [SIGINT], 
Electronic INTelligence [EINT], and Measurement 
and Signature INTelligence [MASINT]) into coarse 
intelligent planning that will aid in not only the 
reduction of cognitive load but in the strategic 
decision making of commanders and operators.  
Core functional requirements for actionable 
intelligence are perception, information fusion, 
opponent modeling, and intelligent planning.
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AI AND 
FOREIGN 

THREATS

SECTION

06
Russian and Chinese military and intelligence 
strategists share the consensus that AI-enabled 
weapon systems provide a competitive edge and 
that the adoption of AI in the modern warfare must 
be a priority for these two nations.

According to a 2018 DoD AI strategy summary 
report, nations like China and Russia are making 
important advances and investments in AI for 
military applications.  The investments threaten 
to erode U.S. technological and operational 
advantages and destabilize the free and open 
international order [174].  This section briefly 
reviews the recent history and state of AI for 
weapons systems by Russia and China.

6.1  Russia

Russian President Vladimir Putin asserted in 
September of 2017 that nations leading the 
research and exploitation of AI will come to 
dominate global affairs.  In December of 2020, 
Vladimir Putin presented key policies for statewide 
adoption of AI, one of which is boosting the private 
investment in domestic AI industries [175].

Although Russia places its AI readiness at 29th in 
the world, it has advanced from 21st to 16th place 
in AI research. Russia also ranks 6th in terms of 
government strategy in an independent global AI 
index [6].

Russia’s global AI initiative via the AI federal 
project is prioritizing the following areas for more 

research and development funding:  decision-
making systems, computer vision, natural 
language processing, and advanced robotics and 
AI technologies.  These initiatives, coupled with 
the military’s expression of urgent AI-enabled 
countermeasures and defensive strategies, are 
spearheading the Russian military AI development.

Although full autonomy of weapons systems 
is yet to be fielded, Russia already boasts new 
semiautonomous glide missiles with “fire and 
forget” capabilities and semiautonomous nuclear 
weapons [176]:

•	 Burevestnik:  An experimental, nuclear-
powered cruise missile with AI-enabled 
guidance in development.

•	 Avangard:  An operational, ballistic-launched, 
hypersonic glide vehicle that computes 
its glide path before its launch, using an 
AI-enhanced system, with no explicit 
predictability to the path it has computed and 
decided to pursue.

•	 Poseidon:  An experimental, nuclear-powered, 
autonomous unmanned underwater vehicle 
(UUV) with complex navigation algorithms and 
path planning.

•	 Sarmat:  An experimental, intercontinental 
ballistic missile with AI-enabled guidance.

Swarm technology is another active area of 
development by the Russian Ministry of Defense, 
particularly in the naval domain.  An antisubmarine 
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project is underway that seeks to develop 
AI-enabled robotic swarms with semiautonomous 
strike capability for swarm detection and 
submarine searches.

Regarding command and control, Russia’s National 
Defense Management Center and Automated 
Control System are equipped with AI decision 
support for real-time and forward-looking analysis 
of armed conflict and countermeasures networked 
with other Ai-enabled critical nodes and early 
warning and air-defense systems.

Via AI technologies, the PANTSIR-S air defense 
systems demonstrated a semiautonomous 
operation of context-driven target positioning, 
identification, threat-based prioritization, and 
optimal solution set for target kills [176].

State-owned Russian media Zvezda released a 
video of a series of tests on January 23, 2022, at 
Russia’s Alabino training ground, where military 
drills were conducted to test new robots—logistics 
unmanned ground vehicles and Scout-Kamikaze 
robots [177].

While Russia’s initiatives on AI and autonomy 
technology implementation within the military 
context are ramping up, development efforts 
are hampered by the absence of digitized 
infrastructure and a clear strategy similar to U.S. 
DoD 3000.09 [64].

6.2  China

Unlike Russia, China’s ambitions to become an 
AI superpower can be readily seen through its AI 
investment and prolific research, the largest in the 
world.  According to Stanford University’s Artificial 
Intelligence Index Report, China has had the largest 
share of AI research publications in the world 
since 2017 [175].  The World Intellectual Property 
Organization (WIPO) reported that China ranked 
1st with a 74.7% of the global share of AI-related 
IP in the past decade and 12th in its 2021 Global 
Innovation Index, moving up 2 rankings from  
2020 [178].

The Chinese military initiatives on AI and 
autonomous systems are motivated by the need to 
offset the decades-long conventional superiority 
of U.S. military technology by shifting and 
prioritizing its development efforts into disruptive 
technologies and AI-enabled weapons systems, 
creating an asymmetric warfare landscape against 
the United States.

China’s AI strategy document provides a view 
of China’s intent and engagement to “promote 
all kinds of AI technology to become quickly 
embedded in the field of national defense 
innovation” [179].  In fact, China is actively engaged 
in the modernization and “intelligentization” of 
its military capability across domains of combat 
operations.  U.S. defense analysts indicated that 
China’s Strategic Support Force is pursuing the 
application of recent advances in AI to its missions 
of space, cyber, electronic, and psychological 
warfare [180].

A 2018 assessment of research publications and 
technical papers from China highlighted a shift 
in the Chinese military stance from defensive 
countermeasures to AI-enabled offensive initiatives 
[181].  The survey also suggested that Chinese 
experts are pursuing the development of AI-based 
controls of hypersonic glide vehicles.

Besides the existing platforms, such as the Large 
Displacement Unmanned Underwater Vehicle 
HSU-001, Chinese People’s Liberation Navy is 
actively pursuing the development of several 
unmanned surface vessels (USVs) that may operate 
semiautonomously [180].  Moreover, the Chinese 
People’s Liberation Army Air Force (PLAAF) is 
developing advanced UCASs that can optionally 
operate in MUM-T and unmanned combat 
settings.  An example of these advanced UCASs is 
the stealth Sharp Sword drone GJ-11 projected to 
launch swarming decoys at enemy warships [182].  
Swarm operations are central to China’s strategy 
in conducting close-in reconnaissance, deception, 
distributed, and coordinated attacks and saturation 
attacks [183].
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Currently, China’s military is operating a Strike 
Unmanned Combat Air System GJ2, a platform 
capable of autonomous operations, including 
reconnaissance, enemy identification, threat 
judgement, and precision strike [180].  China also 
operates the weaponized Blowfish A2 helicopter 
drone with autonomous engagement and 
strike capability that can accomplish its mission 
individually or as part of a swarm without a human 
operator [179].

The PLAAF developed an AI-based autonomic 
aerial combat simulator used for pilot training and 
mock within visual-range aerial combat.  In a 2021 
simulated aerial battle reminiscent of U.S. DARPA’s 
AlphaDogfight competition, the Global Times 
media outlet reported that an AI pilot shot down 
seasoned pilots [184].  China intends on integrating 
the AI pilot into warplanes to assist human pilots 
during aerial combat.

In its 2021 report, the NSCAI set off an alarm on 
the U.S. current advancement in AI, alluding to 
the possibility that the current initiative and state 
of developments are leaving the United State at a 
strategic disadvantage [1].  It adds that “America is 
not prepared to defend or compete in the AI era.”

As a result, the DoD has recognized that modern 
battlefield has transformed into a highly complex 
environment characterized by growing capabilities 
of adversaries.  Besides the continued development 
of key technologies in  offensive, deterrent, and 
defensive weapons, the DoD is further seeking to 
increase weapons efficacy and exploit AI for the 
symbiosis of humans and intelligent systems on 
the battlefield.  Albeit the transformative effort 
required to adopt AI across operations, domain 
enterprises, and services is monumental, the 
pivotal change is vital for U.S. national security and 
that of its allies.
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ETHICAL 
CONSIDERATIONS

The use of AI for weapons systems produces a 
variety of ethical concerns that must be considered.  
In this section, we will briefly summarize the ethical 
concerns surrounding AI for weapons systems and 
the current related U.S. government guidelines.

The overall success of ML and AI has spurred 
a revolution in data-driven businesses and 
technologies that touches most industries, not the 
least of which is the defense sector.  Commissioner 
Nichelle Bechelet has advised member states 
of the United Nations put a moratorium on the 
use of AI systems until their adverse risks are 
addressed [185].  Green [186] laid out 16 major 
ethical challenges inherent in the automation 
of interactions between AI and humans.  These 
challenges include psychological, environmental, 
economic, lack of transparency, interpretability, 
safety, intent, etc.

The list of ethical implications for use of AI in 
general is quite extensive, let alone those which 
apply to the specific use of AI for weapons systems.  
As such, governments and institutions around the 
world have begun investigating and formulating 
strategies that attempt to address these issues and 
mitigate the risks associated with introducing such 
technologies.

RAND Corporation’s Project Air Force (PAF), a 
federally funded research and development 
center, interviewed 29 AI experts to help answer 
questions regarding the ethical implications of AI in 
military applications.  The experts raised significant 
concerns about military applications of AI.  These 

concerns can be grouped into several broad 
areas—risks of error, increased risks of war, and 
risks of military operators and leaders putting too 
much confidence in these capabilities.  The experts 
listed the following concerns of militarized AI that 
need mitigated:  AI systems might make dangerous 
errors, AI could cause arms racing or escalation, 
military operators and leaders could put too much 
trust in AI, and the need for a closer examination of 
the risks of military AI [187].

An overarching concern among technologists, 
advocates, and other parties is that military 
establishments will hasten to integrate AI without 
paying sufficient regard to the seriousness of these 
risks.  As countries compete to attain the greatest 
military benefits of AI, they might not put proper 
precautions in place.  Advocates and governments 
have argued that the key to minimizing most 
risks is maintaining some level of human agency 
over these systems.  With a human in the AI 
system’s loop, that person can ensure that the 
system complies with applicable laws and rules of 
engagement and can be held accountable for the 
system’s actions if it does not.

DoD Directive 3000.09 [64] established DoD policy 
regarding autonomous and semiautonomous 
weapons systems and guidelines to minimize its 
attendant ethical and practical risks.  This policy 
extends to autonomous and semiautonomous, 
manned and unmanned, and lethal and nonlethal 
systems.  It is important to note that this directive 
institutes policies and reviews and assigns 
responsibilities for its own implementation 
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to appropriate DoD stakeholders.  It does not 
technically allow or disallow any specific practice 
in AI or autonomy but sets policies where systems 
be designed to allow commanders and operators 
exercise “appropriate levels of human judgment 
over the use of force.”  Other policies include, but 
are not limited to, ensuring that systems seek 
human input if unable to complete a mission within 
the commander’s intent or time allotted, rigorous 
verification and validation and operational test and 
evaluation, and measures to prevent loss of control 
of the system to unauthorized parties.  However, 
systems that do not abide by these policies are not 
automatically disallowed but referred for review “by 
the Under Secretary of Defense for Policy (USD(P)); 
the Under Secretary of Defense for Acquisition, 
Technology, and Logistics (USD(AT&L)); and the 
CJCS before formal development and again before 
fielding” [64].

On January 24, 2020, the DoD officially adopted five 
ethical principles to address concerns surrounding 
the use of AI in government applications.  The 
listed principles are a commitment from the DoD 
to provide oversight during the conception and 
operation of an AI system and ensure responsible 
use of AI and the protection of privacy and civil 
liberties.  These principles apply to AI systems that 
serve both combat and noncombat functions [188]:

1.	 Responsible – DoD personnel remain 
responsible for the entire AI life cycle.

2.	 Equitable – DoD will take steps to minimize 
unintended bias in AI.

3.	 Traceable – Relevant personnel will have an 
adequate understanding of the AI system life 
cycle.

4.	 Reliable – The DoD’s AI capabilities will have 
well-defined uses that will undergo testing to 
ensure safety, security, and effectiveness.

5.	 Governable – The DoD will have the ability to 
detect and avoid unintended consequences of 
AI and can disengage or deactivate deployed AI 
that demonstrate unintended behavior.

A set of guidelines, known as the Responsible 
AI (RAI) Guidelines [189], was developed by the 
Defense Innovation Unit (DIU) to operationalize 
the DoD’s ethical principles.  This was achieved by 
integrating the ethical principles into the planning, 
development, and deployment phases of the AI 
system life cycle.  The RAI Guidelines present each 
phase with a series of questions within a workflow.  
Progression to each subsequent phase requires 
all questions are satisfied by program personnel.  
Projects that followed these guidelines were said 
to result in functionally superior AI systems that 
better aligned with the DoD’s ethical principles.  
Figures 7-1–7-3 show the workflow for the 
planning, development, and deployment phase of 
the AI lifecycle, respectively.  Questions are tied to 
relevant, ethical principles adopted by the DoD.

The U.S. government continues to discuss and 
codify the way in which it will use AI for defense 
applications.  Debates over the ethics of AI for 
weapons systems will continue, and the U.S. 
government will be in the spotlight to adopt and 
implement prudent policies that maintain ethical 
standards while also enabling all the technological 
advancements that AI promises.
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Figure 7-3.  The DIU’s RAI Guidelines Workflow During the Deployment Phase of the AI Life Cycle (Source:  Defense Innovation Unit,  
https://www.diu.mil/responsible-ai-guidelines [189]).

Figure 7-2.  The DIU’s RAI Guidelines Workflow During the Development Phase of the AI Life Cycle (Source:  Defense Innovation Unit,  
https://www.diu.mil/responsible-ai-guidelines [189]).

Figure 7-1.  The DIU’s RAI Guidelines Workflow During the Planning Phase of the AI Life Cycle (Source:  Defense Innovation Unit,  
https://www.diu.mil/responsible-ai-guidelines [189]).
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In view of the advent of the intelligence age 
and the ever-increasing foreign defiance to the 
U.S. technological and military leadership, AI 
is poised to become the determinant factor in 
ensuring future battlefield readiness and tactical 
advantage.  As combat complexity and information 
dimensionality increase, it is of prime importance 
in accordance with the U.S. AI initiatives to identify 
superlative capabilities that AI technologies can 
provide to ensure increased combat effectiveness, 
lethality, and survivability of U.S. weapon systems.

Swarm Intelligence, human-robot interaction, 
nonlinear adaptive control, visual perception, 
opponent modeling, and cognitive electronic 
warfare are some of the key critical areas that will 
leverage AI to provide bleeding-edge, intelligent 
combat systems.

Furthermore, with the recent advances in 
neurosymbolic AI and neuroevolutionary AI 
research, boundaries are being traversed to 
close the gap between narrow and general AI.  
Warfare will never be the same, as AI and related 
technologies continue to shape combat operations 
and increase the capabilities and effectiveness of 
weapons systems across domains and services.
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