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The Defense Systems Information Analysis Center 
(DSIAC) is a U.S. Department of Defense (DoD) 
IAC sponsored by the Defense Technical Informa-
tion Center (DTIC).  DSIAC is operated by SURVICE 
Engineering Company under contract FA8075 14 D 
0001 and is one of the next-generation DoD IACs 
transforming the IAC program into three consol-
idated basic centers of operation (BCOs):  DSIAC, 
Homeland Defense Information Analysis Center 
(HDIAC), and Cyber Security and Information Sys-
tems Information Analysis Center (CSIAC).  The core 
management and operational responsibilities for 
six legacy IACs (AMMTIAC, CPIAC, RIAC, SENSIAC, 
SURVIAC, and WSTIAC)* were officially transitioned 
to DSIAC on July 1, 2014.  In addition, DSIAC is 
responsible for supporting the three new technical 
areas:  Autonomous Systems, Directed Energy, and 
Non-Lethal Weapons.

DSIAC serves as the U.S. national clearinghouse for 
worldwide scientific and technical information for 
weapon systems; survivability and vulnerability; 
reliability, maintainability, quality, supportabili-
ty, interoperability (RMQSI); advanced materials; 
military sensing; energetics; directed energy; and 
non-lethal weapons.  As such, DSIAC collects, 
analyzes, synthesizes, and disseminates related 
technical information and data for each of these 

focus areas.  These efforts facilitate a collaboration 
between scientists and engineers in the Defense 
Systems community while promoting improved 
productivity by fully leveraging this same commu-
nity’s respective knowledge base.  DSIAC also uses 
information obtained to generate scientific and 
technical products; including databases, technol-
ogy assessments, training materials, and various 
technical reports.

State-of-the-Art Reports (SOARs)—one of DSIAC’s 
information products—provide in-depth analysis 
of current technologies, evaluate and synthesize 
the latest technical information available, and 
provide a comprehensive assessment of technolo-
gies related to the Defense Systems’ technical focus 
areas.  Specific topic areas are established from 
collaboration with the greater Defense Systems 
community and vetted with DTIC to ensure the 
value-added contributions to Warfighter needs.

DSIAC’s mailing address:

DSIAC 
4695 Millennium Drive 
Belcamp, MD 21017-1505 
Telephone: (443) 360-4600

ABOUT DSIAC

*AMMTIAC = Advanced Materials and Manufacturing Technical Information Analysis Center 
CPIAC = Chemical Propulsion Information Analysis Center 
RIAC = RMQSI Information Analysis Center 
SENSIAC = Military Sensing Information Analysis Center 
SURVIAC = Survivability Information Analysis Center 
WSTIAC =  Weapons Systems Technology Information Analysis Center
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This state-of-the-art report (SOAR) discusses cur-
rent and future technologies and techniques for 
ground and aerial navigation under Global Posi-
tioning System (GPS)-denied environments.  GPS 
is an inaugural part of modern navigation and, 
when spoofed, can have costly outcomes—missed 
objectives, crashes, and consequences for people 
and property.  This SOAR describes general auton-
omous approaches for unmanned systems, with 
added detail for driverless ground vehicles and 
unmanned aerial systems to mitigate spoofing and 
operate completely without GPS.

ABSTRACT
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SECTION

01
1.1 WHAT IS THE DIFFERENCE?

1.1.1	Automatic, Autonomous, and Artificial 
Intelligence (AI)

To understand the difference between automatic, 
autonomous, and AI, let us look at standard (manu-
al) vs. automatic transmission vehicles.  Most mod-
ern vehicles are automatic, where gears shift as 
the driver increases and decreases speed.  Alterna-
tively, a manual transmission requires the driver to 
take action to execute a gear change for optimum 
vehicle operation.  The automatic transmission 
decides when to change gears and what direction 
to change them based on sensor data that corre-
sponds to driver operation.  Automatic transmis-
sions still require a degree of human interaction, 
such as changing the speed in a vehicle.

Autonomy removes human interaction from a 
process.  Autonomous vehicles have the capacity 
to make limited decisions, which normally fall to a 

human operator.  An example would be reading a 
speed limit sign and adjusting the speed accord-
ingly.  Understanding information such as speed 
limit signs is relatively easy with a machine vision 
model that detects stop signs.  However, what if 
a sudden storm hits?  How does an autonomous 
vehicle decide when a storm is too dangerous to 
continue to move through?

AI is a broad branch of computer science focused 
to train computers to make decisions like humans.  
The decision-making works for ranges of vehicles 
in different applications, adapting for land, sea, and 
aerial vehicles (shown in Figure 1-1).

With AI, an autonomous vehicle makes decisions, 
such as whether to continue through a storm, go 
around, or turn back—the decisions of a human 
operator.

INTRODUCTION

Figure 1-1.  Autonomous Navigation Applied to All Vehicles:  Land (Left), Air:  Unmanned Aerial Systems (UASs) (Center), and Water (Right) 
(Source:  Defense Visual Information Distribution Service [DVIDS]).
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1.1.2	Guidance, Navigation, and Control

The terms guidance, navigation, and control are 
often blended together into one concept, but they 
are truly three distinctly different functions.

1.1.2.1  Guidance

Guidance provides the reference trajectory.  It 
includes information such as position, velocity, and 
acceleration of the vehicle.  This state vector of the 
vehicle with heading bearing is a reference for the 
path or trajectory to move along. 

1.1.2.2  Navigation

Navigation is the path required to arrive at a desti-
nation.  Systems and devices such as Global Po-
sitioning System (GPS), gyros, radar, etc., provide 
information to plot a course.

1.1.2.3  Control

Control gives the state of the vehicle and provides 
options for the operator to consider keeping on 
the desired trajectory.  If a vehicle drifts off its 
planned course, the controls supply information on 
how to get back on course.

1.2 WHAT ARE AUTOMATED VEHICLES?

The U.S. Army Engineer Research and Develop-
ment Center (ERDC) issued guidelines for auton-
omy levels for unmanned systems (UMSs) in 2014 
[1].  “Levels of Autonomy and Autonomous System 
Performance Assessment for Intelligent Unmanned 
Systems” was drafted to assist for testing and eval-
uating the following vehicles (shown in Figure 1-1):

•	 Unmanned and autonomous ground vehicles

•	 Unmanned aerial vehicles (UAVs)

•	 Unmanned maritime vehicle systems

The guidelines help with reliable testing of the 
safety and performance of UMSs for the armed ser-
vices and define messages, a framework for model-

ing and architectures for autonomous vehicles.

Similar definitions have been applied to driving 
vehicles by the National Highway Traffic Safety Ad-
ministration (NHTSA).  According to the NHTSA, a 
fully automated vehicle is one where “the vehicle is 
capable of performing all driving functions under 
all conditions” [2].

Figure 1-2 outlines the NHTSA scale to grade and 
define vehicles’ automation.

From the NHTSA scale, we see most cars and trucks 
are Class 0 automated vehicles.  Technologies like 
automatic braking systems (ABS) and traction 
control assist are not considered advanced driver 
assistance.  To be a Class 1 automated vehicle, the 
vehicle must have features like automatic emer-
gency breaking, rear cross traffic alert, lane center-
ing assists, etc.

When Tesla debuted their Autopilot, it was a Class 2 
vehicle.  The driver had to keep his or her hands on 
the wheel and monitor the surrounding environ-
ment.  With new software and hardware updates, 
Class 3 autonomous vehicles could soon be avail-
able.

1.3 BENEFITS OF AUTOMATED VEHICLES

Automated vehicles provide numerous benefits, 
bridging diverse industries.  For the automotive 
industry, automated vehicles can provide a safer 
and less stressful commute to and from locations.  
Automated vehicles also have immediate aware-
ness and more information than a typical driver.  
Cars can have up to 360 degrees of vision and 
knowledge around the vehicle body.  A human 
driver tends to focus mainly on objects in front of 
the vehicle.  The driver turns for direct vision, with 
help through mirrors for limited sight awareness of 
the side and rear vehicle.  Even with turning and di-
rect looks, a driver is still seeing a small amount of 
the true environment.  Automated vehicles use an 
array of sensors to gain awareness in all directions. 
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As shown in Figure 1-3, the automated vehicle 
has a distinct advantage of seeing all angles of its 
surroundings at once.  Other potential benefits are 
multiple sensors looking in the same direction for 
redundancy and overlap.  If a human is blinded by 
a bright light, it could be minutes before his or her 
vision returns to normal.  If an automated vehicle 

has one sensor that gets “blinded,” it may have oth-
ers that can still see and safely drive the vehicle.

Manned and unmanned aircraft equipped with the 
Terrain Avoidance Warning System (TAWS) [5] can 
really show their benefit during adverse conditions 
and limited visibility.  TAWS is common on com-

Figure 1-2.  NHTSA Groups’ Vehicle Automation by Capability, With Descriptions for Each Level [2]. 

Figure 1-3.  Comparison of Human Vision (a) and Simulated Computer Vision (b) [3, 4].
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mercial aircraft but not yet required by the Federal 
Aviation Administration (FAA) on larger commer-
cial helicopters for passenger transport. 

Other benefits of automated vehicles take advan-
tage of visual localization and mapping algorithms 
using simultaneous localization and mapping 
(SLAM) methods.  SLAM may or may not need 
references for preloaded maps or digital elevation 
maps.  This class of automated systems has the 
advantage of working both with and without GPS, 
using sensors to locate positions from features of 
terrain, littoral zones, elevation, or any other avail-
able features and man-made structures.  Without 
a priori localization information, some automated 
vehicles build their own maps, with passes through 
an area.

1.4 SENSORS AVAILABLE TO UMSs

UMSs are equipped with sensor pods that employ 
a variety of electro-optical, infrared (IR), and active 
radar sensors for target indication across frequen-
cy bands for improved sensing of locations and 
situational awareness from nearby natural objects 
and possibly man-made, approaching objects or 
threats.

Modern sensors for UASs are sensitive to size, 
weight, and power (SWaP) requirements for small-
er platforms and aid flight duration of systems with 
limited fuel or energy supplies.

Active light detection and ranging (LiDAR) systems 
are deployed on UASs for day or night for mapping 
urban environments, terrain features, and other 
areas of activity, as shown in Figure 1-4.  LiDAR 
three-dimensional (3-D) data provide information 
for digital and physical models for many uses, in-
cluding municipal planning, urban rescue, disaster 
relief, and development of strategies for tactical 
maneuvers.

Before and after comparisons of urban and terrain 
features can assess mission effectiveness, com-
pletion of tasks, damages, and debris fields—any 
number of metrics on operations or natural disas-
ters.

Use of LiDAR on long-duration aerial vehicles can 
loiter to provide time-sensitive information for 
progressions of conditions and monitor changes of 
movement.

1.5 DIFFERENCES BETWEEN GPS-ENABLED 
AND GPS-DENIED ENVIRONMENTS

GPS is a satellite base positioning system devel-
oped by the U.S. government.  These satellites 
continuously send a radio signal containing the 
time, data, and location of the satellite (Figure 1-5).  
Since these are radio signals, they can be easily 
blocked or jammed.  When this happens, the envi-
ronment is considered a GPS-denied environment.  
In these environments, navigation is impaired for 
vehicles that rely on GPS for navigation.  

Figure 1-4.  LiDAR 3-D Data (Left) and Physical Models (Right) (Source:  DVIDS).
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In this report, we will discuss different technolo-
gies, where they have gaps, where they excel, and 
when a vehicle should use these as their primary 
navigation system.

Figure 1-5.  GPS Satellite on Its 23rd Year in Orbit (Source:  DVIDS).
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SECTION

02
Long before GPS, explorers mapped the land and 
sea by writing and drawing what they saw.  Polyne-
sian navigators could navigate hundreds of miles 
without the use of any instruments, relying on the 
stars and the ocean [6].  Early explorers used similar 
techniques but also instruments such as a com-
pass to find the direction they were heading while 
they traveled.  During the night, they could use 
a sextant, but only if they could see the horizon.  
Watches were especially important.  By knowing 
the time, they could approximate the distance they 
traveled.

Navigating at sea uses similar instruments.  Howev-
er, a simple watch did not keep time well enough.  
In 1764, John Harrison invented the chronometer, 
a very accurate watch not affected by the pitch-
ing and rolling of ships.  With accurate time came 
accurate longitude location [7].  Once ships were 
constructed out of metal, traditional compasses 
could no longer point north.  The magnetic field of 
the ship made its bearings inaccurate.  Now, ships 
use a special compass called a gyroscopic compass.  
These compasses are not affected by the magnetic 
field of the ship or earth.  They always point toward 
true north.  Even with GPS, ships still use a chro-
nometer and a gyroscopic compass when travers-
ing open water.

Today, ships have many systems onboard that help 
them navigate.  Radar and radio brought new long-
range navigation.  Marine vessels were no longer 
without communication while at sea.  Long-range 
navigation (LORAN-A) was a low-frequency, land-

based radio navigation system developed during 
World War II.  LORAN-A worked within 600 miles of 
the U.S. coast.  It was later replaced by LORAN-C, 
which had a range over 2,000 miles and an accu-
racy of 0.3 miles [8].  A LORAN installation, shown 
in Figure 2-1, has become a backup for the Global 
Navigation Satellite System and GPS.

Dead reckoning with an Inertial Guidance System 
(IGS) can provide information about position, 
speed, and location without having to use celestial 
observation or other remote systems like GPS.  It 
uses a Kalman filtering technique to mathematical-
ly determine navigation solutions [9].

Kalman filtering is an algorithm that provides esti-
mates of some unknown variables given the mea-
surements observed over time [10].  The algorithm 
works in two steps—prediction (or propagation) 
and update (or correction).  Each new prediction is 

BRIEF HISTORY  
OF NAVIGATION

Figure 2-1.  LORAN Station in Raymondville, TX (Source:  DVIDS).
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based on the previous predictions, which is where 
the high uncertainty in long periods of time enter.

This is why systems that have a large uncertainty 
over time are typically used in combination with 
systems like GPS.  GPS would provide the correc-
tions to dead reckoning, keeping the error minimal 
in case the GPS signal is lost, and the vehicle has to 
use dead reckoning as the navigation system (see 
section 4.1).

During World War I, aircrafts used similar naviga-
tion to land- and seacrafts.  They looked for land-
marks and took compass bearings during the day 
and used celestial navigation during the night.  
As marine navigation technology evolved, so did 
aircraft navigation.  Aircrafts started using systems 
like LORAN and their own versions of IGS.  Like 
ground navigation and marine navigation, aircrafts 
quickly added GPS navigation into their systems.

All of these systems can be used in GPS-denied 
environments, with some level of accuracy.  Many 
of these systems have lower accuracy or inherent 
drift in their abilities to navigate.  For example, the 
LORAN-C’s accuracy of 0.3 miles is a large uncer-
tainty compared to satellite-based systems typical-
ly within 30 ft.  GPS also provides an accurate time 
that can be used to calibrate other systems that 
may have less-accurate time-keeping methods.
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Even as technology advances, there are still issues 
for automated vehicles that need sorting.  Some of 
these issues revolve around the safety and security 
of occupants inside and outside the vehicles, while 
others are the accuracy of the navigation of auto-
mated vehicles. 

3.1 RISKS AND VULNERABILITIES FOR  
AUTONOMOUS SENSING AND OPERATION

One of the biggest needs for automated naviga-
tion are detecting and recognizing objects and 
obstacles within a vehicle’s path.  Most systems 
rely on visual models to detect objects in the path 
of the vehicle.  Visual models can be fooled into 
detection by shadows or reflections that resemble 
one of the classifier objects.  Other potential issues 
include fast-changing lighting conditions.  For 
example, going from bright sunshine into a dark 
tunnel or vice versa can cause camera images to be 
under- or overexposed, resulting in a temporarily 
blinded system as sensors adjust to conditions.  
However, sensor fusion can mitigate transient 
conditions and reduce the chances of an accident 
by combining radar or LiDAR to scan objects in the 
vehicle’s path.

Navigating in a city or flying across a country re-
quires an automated vehicle to know its precise lo-
cation.  In a city, buildings may block or reflect GPS 
signals to cause the location to become inaccurate.  
This could result in an autonomous vehicle turning 
onto a one-way street going the wrong direction 
or thinking it has arrived at its destination while in 
the middle of a busy road.

3.2 SPOOFING OF NAVIGATION AND VISION 
SYSTEMS

Spoofing is the act of deceiving a navigation sys-
tem into thinking it is a different location or block-
ing the navigation altogether.  If a visual system is 
designed to look for stop signs, spoofing can be as 
easy as covering part of the sign.  This causes the 
system to be unable to recognize the sign.

As discussed earlier in this report, shadows, re-
flections, and miss categorizing objects can spoof 
some visual systems.  Whether intentional or not, 
these can be hard to detect as spoofing.

3.2.1	Recognizing GPS-Denied Environments

GPS spoofing is a known issue in the shipping in-
dustry.  One such incident occurred in 2017, when 
20 vessels in the Black Sea reported their positions 
as Gelendzhik Airport, around 32 km inland [11].  
These kinds of GPS spoofing are easy to detect.  
But what if the GPS navigation system was taken 
over and the control made small changes over 
time?  Such was the case in 2013 when University 
of Texas (UT) at Austin students demonstrated 
this when they hijacked the GPS navigation sys-
tems onboard a superyacht.  The students were 
able to fool both the captain and the GPS system 
into thinking there was nothing wrong and that 
they were on the correct heading.  Even though 
the 2017 incident was easy to detect, it was just 
as large a problem as what the UT students did.  
When large shipping vessels GPS systems report 
wrong locations, they cannot dock at the ports.  
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This increases the chances of vessels colliding into 
each other or running aground.

There are three main types of GPS signal denial.  
They are as follows:

1.	 GPS jamming is when an attacker generates 
noise signals in the GPS frequencies.

2.	 Denial-of-service GPS spoofing, sometimes 
called “smart jamming,” is when fake, authen-
tic-seeming signals are broadcasted.  These can 
even be blank navigation information.

3.	 Deception GPS spoofing is when a fake GPS 
signal mimics an authentic GPS signal to hijack 
the navigation system and feed false position-
ing and/or timing information to the receiver.

The ability to detect spoofing is still a challenge 
being met with innovative solutions.
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SECTION

04
4.1 GPS-ENABLED INERTIAL SENSING  
SYSTEMS

Inertial navigation devices use Newtonian physics 
to aid in navigation.  The two main components of 
inertial navigation are the accelerometer and gyro-
scope.  The gyroscope measures the rotation angle 
of the vehicle.  This is used to put the inertial navi-
gation device in the proper frame of reference for 
the accelerometer.  The accelerometer measures 
specific force—the sum of acceleration and the 
force of gravity.  Inertial Navigation Systems (INSs) 
have three of these pairs, one for each axis.  Uncer-
tainty in these measurements grows over time and 
causes drift in the navigation system [12].

Newer, low SWaP Micro Electro-Mechanical Sys-
tems (MEMS)-based inertial measurement units 
(IMUs) are less expensive and manufacturable in 
large quantities than more costly, more precise 
gyroscope-based IMU predecessors.  MEMS-based 
IMUs have more drift (a sensing of a movement or 
orientation change even when an object is station-
ary) than a gyro-based IMU.  For MEMS IMUs to be 
used in navigation, multiple sensors are strategi-
cally placed around autonomous vehicles to add 
secondary acceleration movement measurements 
to supplement MEMS data for more precise accel-
eration and rotational angles of vehicles at each 
point in their path.  The most common technique 
to combine GPS, inertial movements, and their 
errors from multiple sensors is Kalman filtering.

Without GPS to make corrections periodically, the 
error in the Kalman filter calculation will continue 
to grow.  It is worth noting that the error is ran-

dom—a vehicle using IMUs could only take the 
same course multiple times, and it would get back 
different results.

The low cost and low SWaP of MEMS-based IMUs 
make them ideal for smaller vehicles.  Using a 
single Kalman filter with these devices will result 
in larger location errors than other types of IMUs.  
For higher accuracies, Kalman filters are applied to 
each individual measurement to limit single-axis 
noise and reduce compounded errors out of the 
MEMS IMU.

Conventional combinations of Kalman filters  
perform well enough for commercial applications.  
For a more specialized approach and more preci-
sion, a multiple model Kalman filter uses (at least) 
two sub-Kalman filters that run in parallel—one for 
altitude and gyro errors and the other for estimat-
ed position and velocity errors.  The results of each 
are then combined using conditional probability  
of residual.  Results from reference [13] showed 
better than 0.1 m/s for velocity, 5 m for position, 
and 0.5 m for static conditions.

4.2 GPS-DENIED SYSTEMS

4.2.1	Preconstructed Environment Technologies

4.2.1.1  Visual Mapping

Synthetic aperture radar (SAR) is a high-resolu-
tion, two-dimensional (2-D), and 3-D mapping 
technique that produces these maps from reso-
lution-limited radars and the motion of the radar 
antenna.  As the radar moves, it continuously 

CURRENT SYSTEMS AND 
ENVIRONMENTAL USES
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transmits and receives radar pulses in a sweeping 
fashion.  When each point in the radar’s swath is 
scanned multiple times and combined with the 
velocity of the vehicle, a 2-D map can be generat-
ed.  The resolution of SAR is half the pulse width 
orthogonal to the path of the radar [14].  This 
technique is commonly used on satellites because 
SAR takes advantage of the satellites’ movement 
to increase the radar resolution.  Typical resolution 
for SAR is 10 cm, with greater resolution possible 
when using an ultra-wideband radar system.  In 
theory, submillimeter resolution can be obtained 
with a terahertz radar system.

SAR has major drawbacks.  Since it relies on the 
radar’s movement to produce high-resolution 
images, the vehicle must be constantly moving.  
When standing still, a map could be produced at 
the resolution of the radar being used.  With this 
limitation, it is better suited for vehicles that will be 
constantly in motion, such as aerial vehicles.  SAR 
is also memory intensive and has a high computa-
tional load to operate.  Each radar point is sorted 
and stacked with the new pulse’s data and pro-
cessed.  The computational load will increase with 
decreasing wavelength and increasing number of 
pulses per second.  In a GPS-denied environment, 
SAR can be used to navigate vehicles by georegis-
tration (see Section 4.2.1.3).

4.2.1.2  LiDAR

LiDAR is like radar, ranging with laser pulses in-
stead of radio frequency (RF) waves to generate 
an elevation map.  LiDAR is commonly used by the 
National Oceanic and Atmospheric Administration 
to map the land and seafloor and riverbeds (Figure 
4-1).

Different LiDAR systems will have different reso-
lutions, but, generally, the accuracy is 10–15 cm 
nadir.  SAR LiDAR can navigate by georegistration 
and ground control points (GCPs).

During the 2007 Defense Advanced Research Proj-
ects Agency Urban Challenge, most teams’ vehicles 
used LiDAR for obstacle detection and terrain map 
construction [16].  LiDAR was the main system 
used in self-driving cars until Tesla designed its cars 
to rely mostly on cameras (and possibly radar).  Li-
DAR has the advantage of being able to distinguish 
a person walking vs. a person on a bike easier than 
visual systems.  It can also determine the velocity 
of objects relating to the vehicle.

4.2.1.3  Georegistration

Georegistration is a technique used to match 
landmarks or terrain features as scanned or imaged 

Figure 4-1.  Example of LiDAR Map of Bixby Bridge in Big Sur, CA:  Top-Down View (Top Left), Off-Nadir LiDAR View (Bottom Left), and  
Off-Nadir Red, Green, Blue (RGB) View (Right) [15].



4-3

St
at

e-
of

-t
he

-A
rt

 R
ep

or
t:

 S
EC

TI
O

N
 4

Vehicle Navigation: Autonomy Through GPS Enabled and GPS Denied Environments
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

by vehicles to preloaded landmarks or GCPs.  The 
GCPs contain exact coordinates that are used for 
navigation once a match is found.

Georegistration can be used with SAR, LiDAR, and 
camera-based visual systems.  Each sensor will use 
a version of feature extraction that relates well to 
the data type to identify possible landmarks.  These 
features are then compared with the onboard 
GCPs for matches.  If a match is found, the vehicle 
can use the exact coordinates from the GCPs for 
navigation.

4.2.2	Near Real-Time, Constructed Environment 
Technologies

4.2.2.1  SLAM – Simultaneous Localization and  
Mapping (SLAM)

SLAM is a set of algorithms that allows vehicles to 
map the surrounding environment and determine 
their location.  Unlike georeferencing, SLAM does 
not need a stored (provided) map to compare.  This 
allows SLAM to use both standard mapping tech-
niques such as radar and nonstandard mapping 
techniques such as Bluetooth.

Bell Labs used SignalSLAM and GraphSLAM with 
mixed WiFi, Bluetooth, long-term evolution (LTE), 
magnetic signals, and other sensors on a phone to 
passively build a map and determine the location 
of the individual while the phone was in a person’s 
pocket.  After combining all data, they were able 
to reproduce the path taken.  (This experiment 
does include GPS data from the phone; however, 
GPS data was not used inside buildings.)  One key 
advantage to using a phone is most phones come 
with the required hardware [17].

Large-scale, direct monocular SLAM (LSD-SLAM) is 
another method that uses visual cameras to build 
a large-scale map of the environment [18].  LSD-
SLAM tracks camera motion and aligns images.  
Coupling the motion and image predictions with 
filtered estimation of semidense depth maps pro-
duces a contestant map with keyframes as verti-
ces and 3-D similarity transforms as edges.  These 

features help detect and correct drift.  An added 
advantage to LSD-SLAM is it can run on a central 
processing unit in real time, with the target run-
ning on a modern smartphone.

4.2.2.2  Radar Odometry

Radar odometry is a way of estimating the speed 
of the vehicle by using the radar’s return signal.  
One such radar system is called Doppler navigation 
radar—custom-built radars with the sole purpose 
of determining velocity of the vehicle (usually air-
craft).  Doppler navigation radars, which are non-
overlapping, use multiple beams with fixed angu-
lar differences.  These systems have a disadvantage 
of being singularly tasked; they can only determine 
the vehicle’s velocity.  The added SWaP and com-
plexity of adding it to a vehicle may not outweigh 
its benefits [19].

If a vehicle already has a SAR system onboard, it 
is possible to determine the velocity of a vehicle 
using a monopulse SAR system and the direction 
of arrival (DOA) of the pulse—an added capability 
without extra components or added weight or 
power.  By measuring the quint angle to the target 
pixel, the radar’s velocity can be measured without 
the need for the Kalman filter to perform the cal-
culation.  After computing the aircraft velocity and 
the quint angle, the following additional informa-
tion can be calculated:

•	 Forward ground speed of the aircraft.

•	 Crab angle of the aircraft (the angle formed be-
tween the direction the aircraft is pointed, and 
the direction it is tracking is over the ground).

•	 Line-of-sight velocity of the radar in the direc-
tion of the antenna boresight.

•	 Correct azimuthal scaling of the SAR image.

•	 Correct application of antenna beam pattern 
corrections to radiometrically calibrate the SAR 
image.

The DOA technique was tested using a multiphase 
center radar, and it showed promising results.  
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The estimated velocity and true velocity showed 
a close match even when error and offsets were 
added to the data.

4.2.3	Deep-Learning Methods

Deep learning has had a tremendous influence on 
automated tasks because of its greatly improved 
image recognition and ability to recognize and 
recall objects and features in scenes.  The progress 
in recognition has been accompanied by a signifi-
cant increase in computational power available to 
embedded computers small enough to install on 
vehicles.  Computations hosted on graphics pro-
cessing units (GPUs) within embedded processors, 
with many duplicated GPU cores, has greatly ad-
vanced deep-learning methods for use in vehicle 
guidance and navigation.

Deep-learning navigation will only be as good as 
its architecture and chosen datasets.  When select-
ing the dataset, keep these four factors in mind:

1.	 Should be large (more is always better).

2.	 Should be easy to ingest and clean.

3.	 Should contain a reasonable of mix of both 
continuous and categorical data.

4.	 Should contain an equal mix of all categories 
(object recognition).

4.2.3.1  Convolutional Neural Networks (CNNs)

A CNN is an algorithm which takes input data, such 
as images, and assigns weights to various aspects 
of the data.  Once it has assigned these weights, it 
can identify, label, or mark the desired information.  
An example of image-based CNN is alphanumeric 
handwriting classification (Figure 4-2).  Images 
of handwritten letters and numbers are passed 
into the CNN for training.  Once the CNN is prop-
erly trained, images of handwritten notes can be 
passed into the CNN, and it will return the tran-
scribed, handwritten notes.

Programming languages like Python, C++, MAT-
LAB, and even Envi IDL have libraries (or packages) 
dedicated to deep-learning methods.  Some of 
these libraries even have premade CNN model 
generators designed for nonskilled individuals to 
build and use CNN models.  However, these pre-
made generators do not always work with spe-
cialized data, and a person skilled in CNN will be 
needed.

There are many benchmark object detection 
datasets, such as PASCAL, VOL, and COCO; they are 
widely used in autonomous vehicle navigation.  
There are also many architectures that have shown 
promise for fast object detection.  The focus is on 
these three categories of object detection—two-

Figure 4-2.  Example of Handwriting Classification CNN [20].
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stage object detection, one-stage object detection, 
and segmentation (discussed in Section 4.2.3.2).

OverFeat and R-CNN are examples of two-stage 
object detection.  First, these models find regions 
of interests (ROIs) and extract them using a sliding 
window approach.  Once all the ROIs are found, 
each region is passed to the CNN to perform the 
object detection and classification.

YOLO, MultiBox, and SSD are examples of one-
stage object detection.  Unlike many two-stage 
detectors that have similar steps, one-stage de-
tectors vary drastically from one another.  YOLO, 
for example, takes the output from the CNN and re-
gresses the bounding boxes [21], whereas MultiBox 
predicts a binary mask from the input.  YOLO also 
uses regression but uses multiple feature maps of 
different resolutions.

Object detection and recognition is a deep-learn-
ing method used to find objects in images.  It is a 
very popular method for finding objects in images.  
One of its main uses in vehicle navigation is de-
tecting objects and avoiding them.  Object de-
tection does an excellent job at detecting people, 
other vehicles, signs, etc.  For navigation, multiple 
models may be needed for the vehicle to correctly 
navigate.

Two-stage detectors will generally produce better 
detection scores because of the way they break 
into ROIs and allow more refined detection.  How-
ever, this comes at a cost of increased inference 
time and a more complex training architecture.  
One-stage detectors tend to be faster but sacrifice 
accuracy. 

4.2.3.2  Semantic Segmentation

Image segmentation is a form of object detection 
that creates a mask of each object it detects as 
opposed to drawing a box around the object (like 
object detection does).  With segmentation, the 
image is divided into multiple parts called seg-
ments.  Every pixel in the image is then labeled.  
This is a granular map of the scene in the image; 

the vehicle can now use the segmented image for 
improved navigation.

Segmentation can be a two- or one-stage classifi-
cation problem (Figure 4-3).  More common is the 
one-stage pipeline that uses a fully convolution 
network (FCN).  In an FCN, the classification scores 
from a fully connected layer CNN are replaced with 
convolutional layers to produce coarse output 
maps [20–22].

4.3 UNDERGROUND UNMANNED VEHICLES

Unmanned vehicles used in mining solve a num-
ber of difficulties of getting people underground 
while meeting extreme safety requirements under 
dangerous conditions.

GPS signals are obviously unavailable under-
ground.  Early underground vehicle guidance 
depended on approaches using surface beacons 
or transmitters, with coarse resolution and modest 
results.  Low-frequency electromagnetic, ultrasonic 
sensing measurements were used for underground 
positioning and continuous tracking.  Localization 
methods using WiFi, Bluetooth, and radio frequen-
cy identification were also used in early vehicle 
autonomy [23].

Figure 4-3.  Image Segmentation (Top) and After Classification 
(Bottom) [22].
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The underground vehicles use a SLAM method 
based on generalized iterative closest point (GICP), 
3-D point cloud registration between consecutive 
key frames and loop frames to generate under-
ground roadway maps.  The method was evaluated 
under several conditions and compared with 3-D 
LiDAR odometry and mapping data.

The comparison of results demonstrates the al-
gorithm achieves low-drift localization and point 
cloud map construction and is a candidate for 
localization and navigation of underground mining 
environment.

4.4 LOW-SWAP AERIAL SYSTEMS

UASs used for tactical situations with autonomous 
operation are optimized for SWaP.  Using the U.S. 
Department of Defense (DoD) group definitions, 
the focus on low SWaP is Group 1 and 2 UASs, 

which need innovative and efficient counters to 
anti-access/area denial (A2D2) conditions (Table 
4-1).  Larger UASs can carry larger and more so-
phisticated situational sensing systems to help 
guide them through denied spaces (Figure 4-4).

Other small UASs loiter, utilizing intelligence, sur-
veillance, and reconnaissance sensors for kinetic 
collisions or munitions delivery.  Both types of 
tactical small SWaP vehicles require navigational 
knowledge for autonomy to carry out their mis-

Figure 4-4.  A Hand-Carried or Back-Packable Group 1 UAV With Low SWaP for Deep Remote Mission Engagement (Source:   QinetiQ Inc.).

UAS 
GROUP

MAXIMUM 
WEIGHT 

(LB)

NOMINAL 
OPERATING 

ALTITUDE 
(FT)

SPEED  
(KNOTS)

REPRESENTATIVE 
UAS

Group 1 0–20 <1,200 AGL <100 RQ-11 Raven, WASP

Group 2 21–55 <3,500 AGL <250
ScanEagle, 

Flexrotor

Table 4-1.  UAS Groups’ DoD Unmanned Aircraft System Airspace
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sions.  Embedded processors churn through data 
for positioning and navigation and relay informa-
tion and video back to ground stations.

Extracted information and video feeds SLAM pro-
cesses and other mappings for tactical situation 
awareness. 

Some Group 1 UASs (Figure 4-2) can be trailed into 
remote locations and highly unpredictable cir-
cumstances, backpackable and hand launched as 
needed, to gain knowledge of adversary positions, 
assets, and numbers (Figure 4-5).

Group 2 UASs are larger and have different objec-
tives, gaining endurance for persistent observa-
tions or carrying more sophisticated instruments 
for increased knowledge (Figure 4-6).  The larger 
size affords more room for sensors and resolution, 
which may better map and correlate to stored map 
databases for improved positional knowledge.

Figure 4-5.  Hand-Launched Group 1-Type UAS (Source:  DVIDS).

Figure 4-6.  Group 2 UAV – Ground-Launched With Sensors and 
Gimbal for Observation and Mapping (Source:  DVIDS).
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05
Many of the techniques and technologies in this 
section are based on or are extensions to those 
previously discussed.  Most are still being tested 
under lab conditions.

5.1 VISUAL LOCALIZATION

A recent study in visual localization shows a limited 
but promising technique for navigating in GPS-de-
nied environments.  The approach uses particle 
filter networks (PF-net), which have many uses.  
Particle filters or sequential Monte Carlo methods, 
algorithms typically used in signal filtering to solve 
the filtering problems, work well with noisy and/
or partial observations.  The benefit to using the 
PF-net model is it can learn end to end through the 
inferencing algorithms using back-propagation 
gradients [24].

The vehicle (or robot in the study) was placed in 
a random room and allowed to move around the 
building.  Periodically, the vehicle would use the 
recorded data to determine its current location.  
The study showed that a vehicle with a camera, 
odometry, and 2-D floor map can accurately deter-
mine its location.  PF-nets can even use semantic 
maps—maps with labeled areas or rooms.  With 
semantic maps, the vehicle could know if it is in a 
friendly area or a nonfriendly area.  Currently, this 
is not a real-time localization method and does not 
work well for large areas.  With continuing research, 
PF-nets could be a viable SLAM option.

5.2 NEURAL EMBEDDINGS

Neural embeddings are continuous, low-dimen-
sional vectors that represent discrete categories 
connected to each other.  This makes them great 
for finding nearest neighbors and making pre-
dictions or recommendations based on provided 
information.  Neural networks (NNs) are the archi-
tecture that surrounds the neural embeddings.  
A 2014 study used an NN to detect and negate 
spoofing from both natural and artificial sources 
[25].  They tested two NN architectures—feed-for-
ward and recurrent networks, the two architec-
tures used for dynamic systems.  The test used a 
GPS antenna, an RF generator, and a combiner, 
which fed into the GPS receiver.  When testing an 
adaptive notch filter (ANF) cascade with a simple 
structure of a Σ-Π NN algorithm combination, the 
signal-to-noise ratio improved by about 46% and 
the RMS by 27%.

Neural embeddings have an advantage over other 
deep-learning and artificial intelligence techniques 
because they tend to be easier to train; if built cor-
rectly, they can learn and improve themselves over 
time.  For problems like detecting and negating 
GPS spoofing, having the neural embeddings learn 
and adapt to the changing GPS signal environment 
will allow vehicles to continue to have reliable GPS 
signals.

5.3 SEMANTIC GEOREGISTRATION

As discussed in Section 4.2.1.3, georegistration is 
the ability to scan the environment around the ve-

SECTION ADVANCED  
TECHNOLOGIES  

FOR FUTURE  
SYSTEMS
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hicle and locate its position by matching the scans 
to a preloaded map.  Semantic georegistration 
takes this one step further with semantic segmen-
tation.  The degree of segmentation is up to the 
algorithm developer and what is needed; however, 
this added information can lead to more accurate 
localization for vehicles.  For aerial vehicles, seg-
menting visual sensors can allow roads and builds 
to be mapped instead of just prominent landmarks 
[26].  Augmented reality systems can take advan-
tage of semantic georegistration.  Two-dimension-
al images can be turned into 2.5-D and mapped to 
3-D LiDAR maps.  Using segmentation categories, 
including buildings and roads and algorithms to 
estimate distances in images, a 2.5-D map is gen-
erated.  This map compares the estimated building 
height to the LiDAR 3-D map for georegistration 
[27].

5.4 MULTIAGENT SYSTEMS

Multiagent systems are best for distributed prob-
lems.  These are problems where information, 
control, and/or processing are not centralized.  The 
information typically would not be from the same 
vehicle but from other vehicles or systems in the 
surrounding environment.  A good example of this 
is traffic management.  There would be an agent 
for traffic signals, traffic lanes, individual vehicles, 
etc. [28].  Each agent would collect data, perform 
inferencing, and pass its results to other agents.  
Most research on multiagent system navigation is 
centered around civilian applications; however, the 
framework could be adapted for other uses.

5.5 QUANTUM IMUs (COLD ATOM INERTIAL 
NAVIGATION SYSTEMS)

Cold atom inertial navigation systems do not rely 
on the Newtonian physics as many INSs.  Instead, 
they use the quantum properties of matter based 
on de Broglie’s work [29].  De Broglie proposed that 
particles have wave-like properties at the quantum 
level, with a relationship between the momentum 
and wavelength.  Since the particles have wave 
properties, they now have a phase associated 

with them.  As the vehicle rotates, the phase will 
change.  This is similar to how gyroscopes work, ex-
cept gyroscope wavelengths and the speed of the 
wave are much higher than particle wavelengths.  
The change in phase (∆φ) is inversely proportional 
to the wavelength (λ) and velocity (v).

.

The lower speed and smaller wavelengths of the 
matter waves give cold atom inertial systems high-
er sensitivity and, therefore, increased accuracy.  
Using the duality of the particles, the acceleration 
can be obtained from the flight path of the parti-
cles [30].
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06
GPS has almost become a requirement when 
traveling from one place to another.  Besides giv-
ing accurate position, it also provides updates to 
clocks and fixes drift in other navigation systems.  
Because of this, navigating through a GPS-denied 
environment is not trivial and requires new and in-
novated ways to determine precise position while 
traversing the area.  New technologies and tech-
niques will continue to be explored for adding in 
vehicles traversing these environments.  Knowing 
the environment for which the vehicle is intended 
will also boost performance.  Using a preconstruct-
ed environment may not be suitable for areas hit 
by natural or man-made disaster.  Systems like 
SLAM or a deep-learning method would be more 
beneficial.  Understanding how each navigation 
system operates will provide the best option for 
each situation.

SECTION

SUMMARY
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