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What is Magnetic Navigation?
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Benefits of Magnetic Navigation

SOO? Star Tracker?

Terrain Following?Vision?

Passive

r3 >> r2
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Current State of Magnetic Navigation

• Scalar magnetic navigation is a flight-test proven navigation technique
• Two ideal-case flight tests have taken place

‒ High quality magnetic maps
‒ Clean magnetic environment (calibrated)
‒ Lower altitudes
‒ Achieved accuracies of tens of meters over time-scales of hours

• Two other flight tests have taken place with
‒ Inaccurate magnetic maps
‒ Uncalibrated platform
‒ Higher altitudes
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Flight Test 1
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Flight Test 1
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Flight Test 1
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North Channel East Channel

Mean -2.2 m 2.7 m

Standard Deviation 9.0 m 8.9 m

DRMS 13.1 m

Unaided INS DRMS 230 m

Low Altitude ☑
Good Map ☑
Clean Platform ☑
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Flight Test 2
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Flight Test 2
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Red = Truth
Green = INS
Black = Mag-Nav Filter

Low Altitude ☑
Good Map ☑
Clean Platform ☑
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Flight Test 3
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Flight Test 3
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Low Altitude ☒
Good Map ☒
Clean Platform ☑
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Flight Test Take-Aways

• Altitude will always be a variable
‒ Higher altitude decreases accuracy
‒ Filter covariance “understands” this
‒ Solution will converge better as altitude decreases

• While current world map products can be used for navigation, 
their errors do affect navigation accuracy

• Platform calibration will be critical to real-world applications
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The Four Pillars of Magnetic Navigation
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Sensors

Operational Magnetic 
Navigation

Magnetic 
Maps and 

Models

Platform 
Calibratio

n
Algorith

ms

Pillar 1 Pillar 2 Pillar 3 Pillar 4
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MAGNAV SEMINAR

Earth Magnetic Fields Tutorial
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“But I thought the magnetic field changes over time…”

Magnetic navigation faced with deep skepticism due to several 
misunderstandings

Session Goal: Give everyone a common understanding of the 
proposed navigation signal – the Earth’s magnetic anomaly field
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Earth Magnetic Field Components
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For our purposes we 
consider 4 main 
contributions
1. Core Field
2. Anomaly Field
3. Space Weather Effects
4. Platform Effects

Which of these in the 
anomaly field?

Trick Question! None of 
them!
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The Earth’s Core Field
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The Earth’s Crustal Magnetic Field
(EMAG2 Model Shown)
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The Magnetic Anomaly Field as a Navigation Signal

• Stable over time
• Varies in three dimensions
• Increasing altitude essentially 

acts as a low-pass filter on the 
map data

19
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Available Signal By Altitude

• IGRF field has very little variation within aircraft altitudes
• IGRF field looks like a plane on a regional level so navigation information 

only available in one direction
Position Covariance

IGRF 
Gradient
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A Benefit of Potential Fields: Accurate Interpolation
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Sampling Terrain Height Sampling A Potential Field

} Measurement 
uncertainty must 
account for 
missed frequency 
content

}
Accurate 
interpolation 
allows smaller 
measurement 
uncertainty
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Space Weather Effects

• All encompassing term for any time varying unpredictable field
‒ Ionosphere
‒ Magnetosphere
‒ Ocean currents
‒ Induced currents in mantle
‒ Coupling currents

• The distinction is generally not important in magnav because none of them are easily 
removed from our measurements

• Generally small in the frequency band of the measured anomaly field of a flying aircraft
• Much worse at Earth poles
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Temporal Variations
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Secular Variations
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One Year Daily Variations with Secular Variation Removed
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One Year Daily Variations with Secular and Daily (by month) 
Averages Removed
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Summary of Earth Field Components
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SENSOR DEVELOPMENT
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Types of Magnetic Navigation

• Scalar Map Matching
• Directional Scalar Gradient Map Matching
• Total Scalar Gradient Map Matching
• Vector Map Matching
• Tensor Map Matching
• Tensor Eigenvalue Map Matching
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Scalar Measurements

• The magnetic field is a vector field with both length and 
direction

• Existing high sensitivity magnetometers are capable of 
directly measuring magnetic field intensity, or the length of 
the vector, 𝐵𝐵𝑡𝑡

• Measurement is invariant under rotation

𝐵𝐵𝑥𝑥

𝐵𝐵𝑦𝑦
𝐵𝐵𝑇𝑇
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Scalar Sensors

• Low-SWAP scalar sensors needed for scalar mag-nav already exist
• Optically pumped atomic magnetometers exceed needed specifications for magnetic 

navigation
‒ Pico-tesla level sensitivities 
‒ Nano-tesla level absolute accuracies

• Geometrics 823 sensor used for initial flight tests
• Existence of dead-zones in these types of sensors could be problematic for operational 

use but can be mitigated with multiple sensors
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Emerging Low-SWAP Scalar Sensors

• Geometrics MFAM sensor being used for summer flight tests
‒Similar performance
‒10x reduction in size
‒15 cubic centimeters
‒2 Watts

• Additional low SWAP sensors are being developed by 
Twinleaf
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Directional and Total Scalar Gradient Measurements

• Finite differencing of scalar sensors can lead to a 3 
element directional scalar gradient

𝛿𝛿𝐵𝐵𝑡𝑡
𝛿𝛿𝛿𝛿

,
𝛿𝛿𝐵𝐵𝑡𝑡
𝛿𝛿𝛿𝛿

,
𝛿𝛿𝐵𝐵𝑡𝑡
𝛿𝛿𝛿𝛿

• A configuration of multiple scalar sensors can be used to 
measure the directional scalar gradient

• The directional gradient is measured in a body frame
• Total scalar gradient is simply the vector norm of the 

directional scalar gradient (invariant under rotation)
• Building a directional scalar gradient sensor is a goal of 

the DARPA AMBIIENT program
• May be critical for platform calibration
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𝑥𝑥

𝑦𝑦

𝑧𝑧

𝐵𝐵𝑡𝑡1

𝐵𝐵𝑡𝑡2

𝐵𝐵𝑡𝑡𝑜𝑜

𝐵𝐵𝑡𝑡3

𝛿𝛿𝐵𝐵𝑡𝑡
𝛿𝛿𝛿𝛿

= 𝐵𝐵𝑡𝑡0 − 𝐵𝐵𝑡𝑡1
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Vector Measurements

• Vector sensors measure the individual 3 orthogonal components 
of the magnetic field, and give information on both the direction 
and intensity of the magnetic field

• Vector measurements are made in a body frame but map-
matching by necessity occurs in a world frame

• This causes vector magnetic navigation to require highly accurate 
attitude information

34
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Existing Vector Sensors

• Commercially available vector sensors have lower sensitivities and 
accuracies than existing scalar sensors

• Low-SWAP fluxgate sensors have poor performance at low 
frequencies (<<1Hz), a critical requirement for accurate magnetic 
navigation

• Emerging vector magnetometer technology may enable the use of 
the full vector field to increase navigation performance
‒ NV-Diamond
‒ Nuclear Magnetic Resonance
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Limitations of Scalar Measurements
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The Solution: Vector and Tensor Measurements 
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Tensor Measurements

38

• The magnetic tensor field is the spatial gradient of the 
magnetic vector field

• Measured in a body frame
• May be very useful for calibration
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Enhanced Magnetic Model 720

39

https://www.ngdc.noaa.gov/geomag/EMM/img/NGDC-720_V3_hanning_Bz_0km.jpg
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EMM720 Test Scenario: Crossing the Pacific in a Submarine

• Navigation under-water is challenging
• Here we will demonstrate a 14-day underwater trip that 

leaves CA and arrives in Japan with 800 meters of 
uncertainty
‒ Completely passive system
‒ Un-jammable
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Submarine Measurements Along Trajectory
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Bx Vector Component
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Bx and By Vector Component
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Bx, By and Bz Vector Component

44



UNCLASSIFIED  |  Distribution Statement  A:  Approved for public release; distribution is unlimited.

Position Performance
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Attitude Performance
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Map Uncertainty
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What Makes a “Good” MagNav Sensor?

• Signal of interest manifests as very long time-domain frequencies – this 
requires high bias stability, or high sensitivity even at very low frequencies

• Vector and Scalar MagNav will never pT or even single-digit nano-Tesla 
absolute accuracies – aircraft errors, space weather, and map errors will 
always dominate

• Tensor sensor would need absolute accuracies high enough to measure pico-
Tesla per meter fields in order to track the crustal field, which changes on the 
order of nano-Tesla per kilometer 

48
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Conclusions

• Scalar MagNav is possible today with existing sensors
• Vector, gradient, and tensor sensors may improve navigation 

accuracy in two ways
‒ Directly yield more information for map-matching algorithms
‒ Enable operational use through improved calibration techniques

• Questions for discussion
‒ With a large selection of sensor modalities, where should we focus first?
‒ What steps can be taken to confirm the usefulness of vector/gradient/tensor for calibration
 High fidelity simulations?
 Machine learning approaches?
 What platforms should we test on?

‒ Are certain modalities more applicable to different application spaces?

49



UNCLASSIFIED  |  Distribution Statement  A:  Approved for public release; distribution is unlimited.

MAGNAV SEMINAR

MagNav Measurement Equation
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Map-Matching Techniques

• There exists a long history of map-matching algorithms that originated 
with terrain following
‒ TERCOM – heuristic based, match a sequence of measurements to a terrain map
‒ SITAN – EKF, sequential filter using terrain maps as a measurement function

• Modern algorithms outperform these techniques
• The current proposed and flight-test proven technique is that of a Rao-

Blackwellized particle filter, sometimes called a marginalized particle 
filter

• Current RBPF approaches are nearly achieving the Cramer-Rao Lower 
Bound on real datasets
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Map-Based PF Algorithm

52

One dimensional example

Mag update 1

Fly forward 

Mag update 2

Fly forward 

Mag update 3
Continue this process…

Initial position guesses
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INS Integration

• Magnetic navigation benefits from being combined with inertial navigation 
systems

• Conceptually, the use of an INS allows the navigation system to “coast” 
between periods of low magnetic variation

• The magnetic measurements are coupled with the inertial in such a way that 
INS errors are corrected by the magnetic measurements

• INS quality is a dominant variable in navigation performance and can make 
up for the decreased magnetic information at high altitudes or low velocities
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Magnetic Navigation Algorithm
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General Measurement Equation
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General Measurement Equation Cont’d

𝛿𝛿𝛿𝛿 𝜃𝜃,𝜙𝜙,𝜓𝜓 are platform effects remaining after compensation
𝑉𝑉(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙, ℎ, 𝑡𝑡) are the temporal variations, or space weather effects
𝐻𝐻, 𝑏𝑏,𝑤𝑤 are sensor heading error, biases, and white noise errors
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Temporal Variation Filter Observability
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MAGNAV SEMINAR
Maps and Models
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Maps vs Models

• There are two main types of magnetic data
1. World or regional gridded map data (typically scalar data)
2. Spherical harmonic world models  (typically vector data)

• There are important differences with regard to resolution, 
accuracy, and availability
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Regional Gridded Map Data

• Typically scalar data, as this is what 
nearly all aeromagnetic surveys 
measure

• A fully-sampled regional map will 
typically be the most accurate magnetic 
data available
‒ Not all maps are fully sampled
‒ Maps will become fully sampled when upward 

continued to their line spacing distance
• Often leveled to arbitrary datums (do 

not match up with long wavelengths of 
Earth field)
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World Gridded Map Data
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World Gridded Map Data

• World gridded map data is created by merging both satellite data, ship-
borne data, and aeromagnetic survey data

• Typically much lower resolution than regional maps
• Unavoidably there is varying:

‒ Resolutions
‒ Data accuracy
‒ Data availability (large holes)

• Current world maps (such as EMAG2) throw out some high resolution
data to create uniform resolution globally

• World models typically capture long wavelengths from satellite data and 
short wavelengths from aeromagnetic or shipborne data
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World Gridded Map Data

• Because global map products stitch 
together many smaller surveys, they are 
unable to capture long wavelengths

• Satellites can capture the longest 
wavelengths but wavelengths in 
between are difficult to capture

63

Flight from Virginia to Iowa
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Map Quality and Availability
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High Quality Surveys
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World Maps: What is Needed

• Current global maps are useable for navigation but have widely varying 
data resolution, accuracy, and availability

• We need global map products which give
‒ The highest accuracy previously collected data which is available (no down-sampling)
‒ Contain corresponding variance maps to describe trust in the map data
‒ Allow the incorporation of new data easily into the map as we collect more data

• Current world map products will benefit greatly from long-track data to 
resolve long-wavelength field components
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Spherical Harmonic Models

• World-wide full vector field models 
exist

• The current highest accuracy model is 
the Enhanced Magnetic Model 790 
produced by NOAA

• Vector models could potentially enable 
magnetic vector navigation

• These models are at much lower 
resolution than gridded map data
‒ 51 km wavelengths for EMM790
‒ EMAG2 world grid has 2 arc-minute spacing 

(~4 km)
• The additional information from using 

the full vector may somewhat mitigate 
the lower resolutions of the models
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DOD Magnetic Navigation Corridor 

• In 2019 a large magnetic navigation testing 
corridor was created over Edwards AFB, CA

• This data is made freely available to any 
DOD contractors who are working on 
magnetic navigation

• The airspace is not difficult to fly in – a 
civilian Canadian company got permission to 
fly so US defense contractors should have 
no issues
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COORDS Road Survey
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Mid-Altitude Survey
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CAP Survey
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Conclusions

• The issue of magnetic maps for navigation is complex, with many 
variables to consider
‒ Resolution
‒ Availability
‒ Altitude
‒ Scalar/Vector, etc.
‒ Variance information

• In the long term there would need to be dedicated efforts to providing 
magnetic maps to the DOD for use in navigation

• Self-building models are a large enabler for creating a truly global 
navigation system
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MAGNAV SEMINAR
Calibration
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Attitude Coupling

• The problem: ALL platform magnetic field effects are coupled to aircraft 
dynamics, even unchanging permanent magnetic fields of the plane

• Why is this so? Shouldn’t a magnetic field “attached” to the platform have a 
constant effect on the sensor?
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The Complete Picture

75

𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑩𝑩𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

• We can’t ignore the large external 
core field!

• Sometimes the core field 
constructively adds with the 
platform field, sometimes it 
deconstructively adds with the 
platform field

• Therefore all magnetic fields on the 
aircraft are a function of aircraft 
attitude
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Types of Platform Magnetic Fields

• Static Effects
1. Permanent Fields
2. Induced Fields
3. Eddy Currents

• Temporal Effects
1. DC Shifts from electronics turn-on / turn off
2. Communications equipment
3. Control surfaces
4. Fuel Pumps
5. Lights
6. Temperature Effects
7. Engine
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Static Effects: Permanent Fields

77

• For permanent fields the magnetic moments are attached to the frame of the aircraft
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Static Effects: Induced Fields

78

• Induced magnetic moments stay aligned with the inducing field, in this case the Earth’s core 
magnetic field
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Static Effects: Eddy Currents

• Eddy current magnetic fields are induced in the aircraft as a function of 
how quickly it is rotating within the inducing field

• They are electrical currents which are generated to oppose the induced 
magnetic field of the aircraft (Len’s Law) 
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